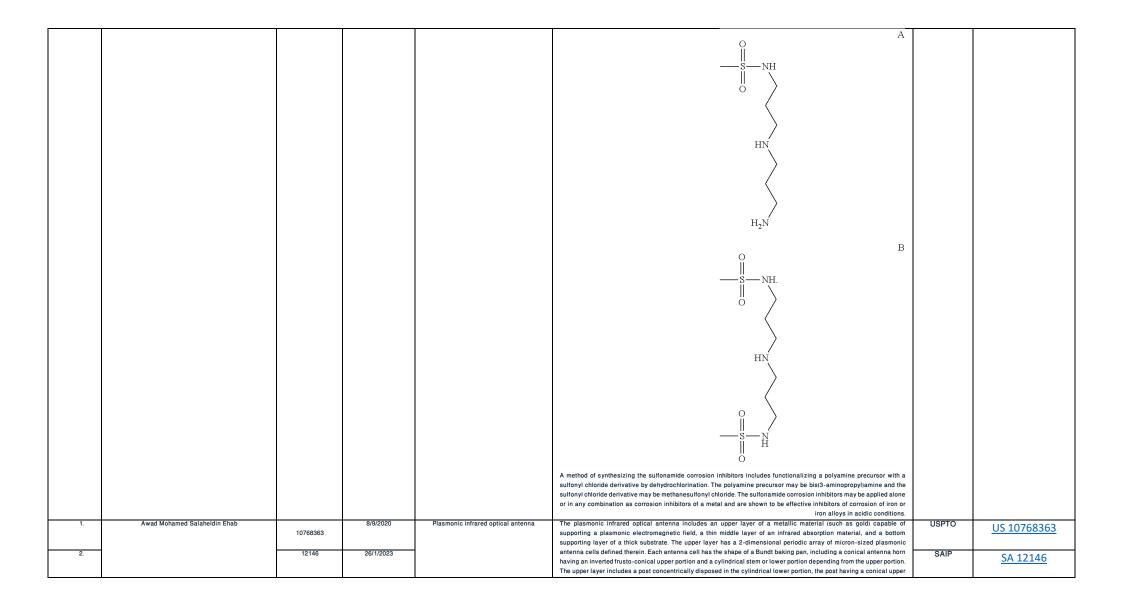
Environmental patents


براءات الاختراع (البيئه)

S.N.	Inventors Name	Patent	Issue	Title	Abstract	Patent	Patent
		No.	Date			Office	Document
1.	Ali Aldalbahi Bushra Ibarahim Alabdullah Manal Ahmed Gasmelseed Awad Shaykha Mohammed Alzahiy Zainah Ali Alqahtani Shoroud Mohsen Alsaqaaf Hessa Abdullah Aljasser Hind Ali Abdullah Aljahehri	11643334	9/5/2023	Copper oxide nanoparticles synthesized using Rhatany root extract	The copper oxide nanoparticles synthesized using Rhatany root extract involves preparing the Rhatany root extract by adding powdered Rhatany roots to boiling water, allowing the mixture to soak overnight, and removing any solid residue by filtering to obtain the aqueous extract. The copper oxide nanoparticles are prepared by mixing equal volumes of the aqueous Rhatany root extract and 0.1 M aqueous copper sulfate, heating the mixture at 80° C. for 40 minutes, and adding 1 M sodium hydroxide dropwise to the mixture to precipitate CuO. The precipitate is removed by centrifuge, washed with ethanol, dried, and calcined at 400° C. for 4 hours to obtain the copper oxide nanoparticles. The resulting nanoparticles proved effective in degrading wastewater dyes, showed anticancer activity against human cervical cancer by cell viability assay, and showed antibacterial activity against various strains of bacteria by agar diffusion.	USPTO	<u>US 11643334</u>
1.	Ali Aldalbahi Raneem Aldawish Manal Ahmed Gasmelseed Awad Noura Saleem Aldosari Reem Hamad Alshathri Leen Abdullah Aldwihi Raghad Alammari Khloud Ibrahim Bin Shoqiran	11718537	8/8/2023	Synthesis of copper oxide nanoparticles	A method of synthesizing copper oxide nanoparticles includes preparing a liquid extract of Rumex vesicarius, dissolving copper salt in the liquid extract to provide a solution with copper nanoparticles, adding a base to the solution with copper nanoparticles to form a precipitate including copper oxide nanoparticles. Copper oxide nanoparticles prepared according to the method are effective photocatalysts for degrading organic dyes and antibacterial agents and exhibit anticancer activities.	USPTO	<u>US 11718537</u>
1.	Salah Ud-Din Khan Sajjad HAIDER Usma Ali Rana	11621095	4/4/203	Method for developing radiation shielding compositions	A computational method for development of radiation shielding compositions, as described herein, can include selecting at least one polymer and at least one metal for each of a plurality of radiation shielding compositions, selecting a polymer:metal ratio for each composition, performing computational analysis to calculate an attenuation coefficient associated with a given radiation dose for each composition, identifying a best candidate composition for radiation shielding based on the calculated attenuation coefficients, and preparing a radiation shielding material including the at least one polymer, the at least one metal, and the polymer metal ratio associated with the best candidate composition.	USPTO	<u>US 11621095</u>

1.	Taleb Aouak Mohamed Ouladsmane Ahmed Yacine Badjah Hadj Ahmed Zeid Abdullah Alothman	11617989	4/4/2023	Extraction of benzene from benzene/cyclohexane mixture	The extraction of benzene from benzene/cyclohexane mixture described herein is a process that removes benzene from a benzene/cyclohexane mixture with high selectivity, resulting in an enriched cyclohexane content in the retentate. The process involves adding an aqueous solution of poloxamer 188 to the benzene/cyclohexane mixture and waiting for the mixture to partition into an organic layer above an aqueous layer. Benzene, being more polar than cyclohexane, is selectively drawn into the aqueous layer. Benzene is then removed from the aqueous layer by pervaporation through a composite PDMS (polydimethylsiloxane/polystyrene membrane. Cyclohexane is recovered from the retentate by drawing off the organic layer of the retentate by any known method. About 97% of benzene has been removed from a 50-50 wt % mixture by pervaporation in the static mode, and about 99% by pervaporation in the continuous mode.	USPTO	<u>US 11617989</u>
1.	Mu Naushad Tansir Ahamad Ayoub Abdullah Alqadami Ayman Abdelghafar Ahmed Zeid Abdullah Alothman	11618004	4/4/2023	Melamine-formaldehyde derived porous carbon adsorbent	A melamine-formaldehyde derived porous carbon adsorbent may be prepared from melamine-formaldehyde derived porous carbon disposable products. The melamine-formaldehyde derived porous carbon effectively removes organic pollutants from aqueous media. Parameters of contact time, solution pH, initial adsorbate concentration and desorption rate affect efficacy. Adsorption capacities of exemplary melamine-formaldehyde derived porous carbon for MG and MB dyes at 298 K were up to 25 mg/g and 35 mg/g, respectively.	USPTO	<u>US 11618004</u>
1.	Manal Ahmed Gasmelseed Awad Promy Virk Mai Abdelrahman Elobeid Wagealla Sarah Saleh Abdulla Alsaif Awatif Ahmed HENDI Khalid Mustafa Osman Ortashi Rabia Qindeel	11617719	4/4/2023	Moringa oleifera nanoparticles	The Moringa oleifera nanoparticles may be synthesized by harvesting Moringa leaves, drying the Moringa leaves, powdering the dried Moringa leaves, suspending the powdered Moringa leaves in a solution, and spraying the solution into boiling water under ultrasonic conditions to obtain Moringa nanoparticles. The Moringa nanoparticles encapsulated by dissolving the Moringa nanoparticles and gum olibanum in ethanol to produce a mixture, injecting the inert organic phase of the mixture into an aqueous solution containing PVA, and homogenizing the aqueous solution. The Moringa nanoparticles may be useful in preventing the growth of cancer cells and in treating diabetes by inhibiting α-glucosidase and/or α-amylase activity.	USPTO	<u>US 11617719</u>
1.	Naiyf Sultan Helial Alaloi Alharbi Jamal Mohammed Ali Khaled Mohamed Salah El-Din Hodhud Shine Moosa Kadaikunnan Ahmed Saad Alobaidi	11806790	7/11/2023	Biosynthesis of metal nanoparticles	A method of preparing metal nanoparticles using a fungal extract includes providing an aqueous solution including a metal salt, and combining the fungal extract with the aqueous metal salt solution to produce the metal nanoparticles. The fungal extract can be an aqueous extract of the manglicolous fungi The metal salt can be copper sulfate (CuSO4) and the metal nanoparticles can be copper nanoparticles. The metal nanoparticles can have a mean diameter in the range of from about 5 nm to about 100 nm. The copper nanoparticles can be used as an antimicrobial agent.	USPTO	<u>US 11806790</u>
1.	Maged N. Shaddad Prabhakarn Arunachalam Abdullah M. Almayouf	11807948	7/11/2023	Method of producing hydrogen peroxide using nanostructured bismuth oxide	The method of producing hydrogen peroxide using nanostructured bismuth oxide is an electrochemical process for producing hydrogen peroxide using a cathode formed as oxygen-deficient nanostructured bismuth oxide deposited as a film on the surface of a conducting substrate. An anode and the cathode are immersed in an alkaline solution saturated with oxygen in an electrolytic cell. An electrical potential is established across the cathode and the anode to initiate electrochemical reduction of the oxygen in the alkaline solution to produce hydrogen peroxide by oxygen reduction reaction.	USPTO	<u>US 11807948</u>
1.	Saeed Mohammed AL-ZAHRANI Arfat Anis Ranjan Kumar Dwari	11638923	2/5/2023	Flotation reagents from acidic olive oil	The flotation reagents from acidic olive oil are made by transesterification of acidic olive oil. Acidic olive oil is olive oil having an acid value high enough to render it unsuitable for consumption, typically greater than 3.3% and/or between 3.3-7%. Transesterification of the olive oil with methanol converts fatty acids in the olive oil to an ester fraction and a glycerol fraction. The ester fraction may be sulfonated and used as the collector in a reverse flotation process, selectively removing the carbonate gangue from phosphate-carbonate rock in the froth, leaving phosphates in the sink. The glycerol fraction may be used without modification as the collector in the reverse flotation process. Both fractions are highly selective for carbonates, substantially reducing loss of phosphates in the froth.	USPTO	<u>US 11638923</u>

1.	Mohamad Saleh Alsalhi	11696925	11/7/2023		hexagonal nanoparticles with a diameter ranging from about 31.22 nm to about 81.22 nm. The Ca(OH)2NPs may be	USPTO	US 11696925
	Sandhanasamy Devanesan				synthesized by heating ethylene glycol, adding calcium hydroxide to the ethylene glycol to provide a first mixture,		00 1100 00 10
	Rawan Ibrahim Salem Alkhalaf				heating the first mixture, adding a carob pulp aqueous extract to the first mixture to form a second mixture, heating the		
	Hajer Saad Abdullah Allayed			Calcium hydroxide nanoparticles	second mixture, adding sodium hydroxide (NaOH) to the second mixture to form a third mixture, heating the third mixture,		
	Nasser Rage Rashed Alghtani			synthesized with carob pulp extract	resting the third mixture at room temperature after heating, centrifuging the third mixture, collecting a colloid sediment,		
	Mohammed Ghazi Alkindi				extracting any unwanted contaminants from the colloid sediment, and drying the colloid sediment to obtain		
	Osama Ghurmullah Mohammed Alghamdi				CarOH)2NPs.		
1.	Husain Abbas	10927548	23/2/2021	Fiber Elements for Soil Stabilization	The fiber elements for soil stabilization include a combination of rigid and flexible fibers that are adapted to be added	USPTO	
1.	Tarek Almusallam	10327 040	LOILIEULI	Tiber Elements for our otabilization	to soil in order to stabilize the soil to improve the geotechnical characteristics thereof. Each fiber element includes a	03F10	<u>US 10927548</u>
	Yousef Al-Salloum				rigid fiber having opposed first and second ends, at least the first end defining a first ring. A plurality of flexible fibers		
2.	Fouser Al-Salloulli	13207	9/7/2023		are attached to the first ring. When mixed with soil, the rigid fibers provide stiffness to the soil mass, and the flexible	SAIP	CA 12207
							<u>SA 13207</u>
					fibers provide deformability. For purposes of packaging, prior to addition to soil, the plurality of flexible fibers may be at		
					least partially secured to one another by a water soluble material, such as a water soluble glue, water soluble thread		
					or the like. A plurality of the fiber elements may be secured to one another by the water soluble material, forming a fiber		
					module.		
1.	Ali Kanakhir Aldalbahi	10689257	23/6/2020	Bio buckypaper synthesized with fish	A bio buckypaper synthesized with fish scales may be manufactured by mixing carrageenan with a bio waste solution	USPTO	US 10689257
	Manal Ahmed Gasmelseed Awad			scales	to provide a first mixture, adding carbon nanotubes to the first mixture produce a second mixture, sonicating the second		03 10089721
	Khalid Mustafa Osman Ortashi				mixture, and evaporative-casting the second mixture to produce the bio buckypaper. In an embodiment, the carrageenan		
2.	Shaykha Mohammed Alzahiy	12987	6/6/2023			SAIP	SA 12987
	onayina monalimou Alzaniy				may be T-carrageenan. In an embodiment, the carbon nanotubes may be single walled carbon nanotubes (SWCNTs) or		JA 12301
					multi-walled carbon nanotubes (MWCNTs). In an embodiment, the bio waste solution may be derived from fish scales.		
1.	Khaled Issa	10483640	19/11/2019	Omnidirectional ultra-wideband antenna	The omnidirectional ultra-wideband antenna is a variant on a monocone antenna, particularly including a supplemental	USPTO	US 10483640
	Muhammad Ahmed Ashraf				radiating element. The omnidirectional ultra-wideband antenna includes an electrically conductive conical surface		0310403040
0	Waleed Tariq Sethi	13209	29/7/2023		having a vertex end and a base end, and a supplemental radiating element having a first portion and a second portion.	0.415	
2.	Habib Fathallah	13209	29/7/2023		The first portion extends from the base end of the electrically conductive conical surface, the first portion being	SAIP	SA 13209
	Saleh Alshebeili				positioned between the base end of the electrically conductive conical surface and the second portion. The vertex end		
					of the electrically conductive conical surface is positioned adjacent to, and spaced apart from, a first surface of a ground		
					plane plate. At least one electrically conductive rod is provided, a first end of the rod being secured to the second		
					portion, and a second end of each rod being mounted on the first surface of the ground plane plate.		
1.	Hany Mohamed Yehia	10898533	26/1/2021	Mangosteen Nanoparticles	Mangosteen nanoparticles and methods of synthesizing Mangosteen nanoparticles are provided. The Mangosteen	USPTO	
1.	Manal Ahmed Gasmelseed Awad	10090333	20/1/2021	Mangosteen Nanoparticles	nanoparticles may be synthesized by drying Mangosteen, Garcinia mangostana fruit, grinding the dried Mangosteen to	03510	US 10898533
2.	Mohamed Fekry Serag El-Din	12689	15/3/2023		form powdered Mangosteen, suspending the powdered Mangosteen in a solvent to form a first Mangosteen solution,	SAIP	64.42622
	Hatem Salama Mohamed Ali				spraying the Mangosteen solution into boiling water under ultrasonic conditions to form a second Mangosteen solution,		<u>SA 12689</u>
	Reem Atta Alajmi				resting the second Mangosteen solution at room temperature (about 20° C.), and freeze-drying the second Mangosteen		
	Dina Mahmoud Metwally Hasanin				solution to obtain Mangosteen nanoparticles. The drying step may include either air-drying or freeze-drying the		
	Wafa Abdullah Al-Megrin				Mangosteen. The Mangosteen fruit peel may be used in the drying step instead of the inner Mangosteen fruit. The		
	Manal Fawzy Elkhadragy				resulting nanoparticles may be used in pharmaceutical compositions, and may be useful for their antioxidant and		
					antibacterial activities.		
1.	Abdullah M. Al-Enizi	10456776	29/10/2019	Method of Fabricating a Photocatalyst for	The method of fabricating a photocatalyst for water splitting includes electrospinning a Zn-based solution mixed with	USPTO	110 40 45 6776
	Tansir Ahamad			Water Splitting	CdS nanoparticles and then calcining to produce CdS nanoparticle decorated ZnO nanofibers having significant	00110	<u>US 10456776</u>
	Ayman Yousef			trater opinting	photocatalytic activity for water splitting reactions. The photocatalyst fabricated according to the method can produce		
2.	Ayman rouser	11991	15/1/2023		He at a rate of 820 μ molh-1g-1 catalyst radicated according to the method can produce H2 at a rate of 820 μ molh-1g-1 catalyst from aqueous solution under light irradiation.	SAIP	SA 11991
					nz at a rate of 620 µmom- ig- i catalyst nom aqueous solution under light irradiation.		<u>24 11221</u>
1.	Mohamed Ramy Abdel-Rahman	10648865	12/5/2020	Thermal sensing layer for microbolometer	The thermal sensing layer for a microbolometer includes a Ge1-xSnx film layer, where 0.17≦x≦0.25. The Ge1-xSnx film	USPTO	US 10648865
	Mohammad Abdulaziz Alduraibi			and method of making the same	layer may be deposited on a substrate layer, such as pure silicon. An additional layer of silicon dioxide may be added,		00 100 40000
	Bouraoui Ilahi				such that the silicon dioxide layer is sandwiched between the silicon substrate and the Ge1-xSnx film. In order to make		
2.		11951	10/1/2023	1	the Ge1-xSnx thin film layer, germanium (Ge) and tin (Sn) are simultaneously sputter deposited on the substrate, where	SAIP	64 44054
					the atomic ratio of germanium to tin is between 0.83:0.17 and 0.75:0.25 inclusive. The sputter deposition may occur in	-	<u>SA 11951</u>
					an argon atmosphere, with the germanium having a deposition rate of 9.776 nm/min, and with the tin having a deposition		
					rate between 2.885 nm/min and 4.579 nm/min.		
1.	Khalid Mustafa Ortashi	<u>├</u> ────┤	17/3/2020	Method of synthesizing watermelon seed	The watermelon seed nanoparticles may be synthesized by dissolving powdered watermelon seeds in a solvent to	USPTO	
L.	Manal Ahmed Awad	10588929	1110/2020		produce a first mixture, adding the first mixture dropwise to boiling water under ultrasonic conditions to produce a	03-10	US 10588929
	Manai Anmeo Awao	10288858		particles			
					second mixture, sonicating the second mixture and drying the second mixture to produce watermelon seed		
2.		11950	10/1/2023	1	nanoparticles. In an embodiment, the watermelon seeds may be Citrullus lanatus seeds. In an embodiment, the	SAIP	SA 11950
					watermelon seed nanoparticles may be included in a pharmaceutical composition, such as an antimicrobial or anti-		<u>3A 11330</u>
					cancer composition.		
· · · · · ·				L	1		

1.	Naiyf Sultan Helial Alaloi Alharbi Jamal Mohammed Ali Khaled Mohamed Salah El-Din Hodhod Shine Moosa Kadaikunnan	10590438	17/3/2020	Biosynthesis of metal nanoparticles	A method of preparing metal nanoparticles using a fungal extract includes providing an aqueous solution including a metal salt, and combining the fungal extract with the aqueous metal salt solution to produce the metal nanoparticles. The fungal extract can be an aqueous extract of the manglicolous fungi The metal salt can be copper sulfate (CuSO4) and the metal nanoparticles can be copper nanoparticles. The metal nanoparticles can have a mean diameter in the	USPTO	<u>US 10590438</u>
2.	Ahmed Saad Alobaidi	12023	17/1/2023		range of from about 5 nm to about 100 nm. The copper nanoparticles can be used as an antimicrobial agent.	SAIP	<u>SA 12023</u>
1.	Husain Abbas Nadeem A. Siddiqui Baha M. A. Khateeb	10954662	23/3/0221	System and method for connecting a square concrete-filled steel tubular column to a reinforced concrete footing	The system and method for connecting a square concrete-filled steel tubular column to a reinforced concrete footing includes a short steel pipe partially embedded in the footing, the pipe having a top end having flanges extending radially therefrom, the top end extending into a cavity in the footing having an elliptical top opening and circular base, the	USPTO	<u>US 10954662</u>
2.	Tarek H. Almusallam Yousef A. Al-Salloum	12028	17/1/2023		flanges extending above the base. An elliptical base plate is welded to the bottom of the tubular steel column, the base plate having a circular opening defined therein and a plurality of spaced flange slots depending therefrom. The bottom end of the column is lowered into the cavity, the elliptical base plate passing through the elliptical opening in the cavity, and the column is rotated 90° to interlock the flanges with the flange slots. The cavity is filled with concrete grout, and the square or rectangular steel column is filled with concrete.	SAIP	<u>SA 12028</u>
1.	Nabil Ahmed Qassim Al-Zeqri Isra Abd Alrhman Aboasbah Ali Mohammed Alsalme	10494722	3/1/2/2019	Sulfonamide corrosion inhibitors	The sulfonamide corrosion inhibitors are compounds of formula A or formula B, as follows:	USPTO	<u>US 10494722</u>
2.	Mohammed Suleiman Shtaya Iyad Atallah Saadeddin Abdelkader Zarrouk Ismail Khalil Warad	11989	15/1/2023			SAIP	<u>SA 11989</u>

Image: constraint of space (space (
Image: Note: Second process provide states in the second process provide under second process process provide under second process pro						portion extending into the horn, a cylindrical middle portion defining an annular waveguide of 50 nm clearance between		
1 Mage N Model 10000007 100000000 Method of production data proceedings method in the same decommend proceeding met								
Notes Notes <th< td=""><td></td><td></td><td></td><td></td><td></td><td>material.</td><td></td><td></td></th<>						material.		
Image: space of the s	1.	Maged N. Shaddad	10683577	16/6/2020	Method of producing hydrogen peroxide	The method of producing hydrogen peroxide using nanostructured bismuth oxide is an electrochemical process for	USPTO	110 10692577
		Prabhakarn Arunachalam			using nanostructured bismuth oxide	producing hydrogen peroxide using a cathode formed as oxygen-deficient nanostructured bismuth oxide deposited as		03 10085577
		Abdullah M. Almayouf			-	a film on the surface of a conducting substrate. An anode and the cathode are immersed in an alkaline solution saturated		
- $ -$	0		10002	15/1/0000		-	CAID	
Constraint Constra	۷.		12003	15/1/2023			SAIP	SA 12003
1 Means All State 108/104 102/200 Synthesis of logical products from packing synthesis manufacture (performed magnetized magnetimagnetame magnetized magnetized magnetimagnetized magnet								
Apple Abuilta Abujatani Maseo Massider 2 2020 MASSIS Masse frameworks 2 202 MASSIS Masse frameworks 2 202 MASSIS Masse frameworks 2 202 MASSIS Masse frameworks 2 202 MASSIS MASSIS Masse frameworks 2 202 MASSIS MASSIS Masse frameworks 2 202 MASSIS Masse frameworks 2 202 MASSIS MASSIS MASSIS MASSIS MASSIS MASSIS MASSIS MASSIS MASSIS MASSIS MAS								
Automotion Automot	1.	Moonis Ali Khan	10557098	11/2/2020	Synthesis of hydrochar from jackfruit		USPTO	115 10557098
2 Xet Akadelin Methanis 10007 1710220 SAIP SAI		Ayoub Abdullah Alqadami				biomass by autoclaving at 150° C250° C. for about 3 hours to produce a hydrochar. The hydrochar can be activated by		0310337030
L Loc United Constraint Constraint SA12022 1 Mounting Anglant 000000000000000000000000000000000000		Masoom Raza Siddiqui				treatment with phosphoric acid (H3PO4), hydrogen peroxide (H2O2), or a combination thereof. The hydrochar produced		
-1 -1	2	Zeid Abdullah Alothman	12027	17/1/2023		according to the method is particularly effective at removing azo-dyes, and specifically methylene blue, from aqueous	SVID	
Metamate Albases Molecular devices	<u> </u>		12021	111112020			SAIF	SA 12027
Husin Abss 1000015 Connection sparse programmer cellulate. Hunges through place services during place during place services								
Image: Contraction Image: Contraction Contraction Contraction Contraction Contraction State Contraction State Contraction State Contraction State Contraction State Contraction State	1.			26/1/2021	Reinforced joint for beam-column		USPTO	LIS 10900215
2 Tars H. Allission 19724 203003 American during space scale solutional course attension as a solution as a solutional course attension as a solution as a solution as a solutional course attension as a solution as a solution as a solutional course attension as a solution as a solutino as a solutino as a solutino asolution as a solution as a soluto		Husain Abbas	10900215		connection	against progressive collapse. Flange stiffening plates reinforce flanges of structural beams, with beam web stiffeners		0310300213
L Notes Locace stifferers are the flage sittening plate, stetering access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the joint and a last partially covering the base were the sitten access the sitt		Hussein M. Elsanadedy				being attached to and extending between the flange stiffening plates. Additional column web stiffeners are attached to		
Youget A. A. Saloum Amount of the second path.e. extending acousts be joint and a less parality covering be beam vet atflements in the ranked path.extending acousts and the stage path.extending acoust and the stage path.extending acoust and the stage path.extending acousts and the stage path.extending acousts and the stage path.extending acousts and the stage path.extending acoust acous	2	Tarek H. Almusallam	12724	23/3/2023		and extend between flanges of a structural column. A longitudinal cover stiffening plate is attached to the column	CAID	
Image: Constraint of the second sec	<u> </u>	Yousef A. Al-Salloum	12724	20/0/2020		stiffeners and the flange stiffening plates, extending across the joint and at least partially covering the beam web	SAIF	SA 12724
Image: Note of the second state of the seco								
Image Meeting Gammales Averal Moor Addulation Rapad Alexability Amalah Rapad Alexability Alexab Ra								
Model Abschlafs Rasted Absehultig 10751802 using red sand the red sand in the ware, monorig a superstant form in the red sand in southing, each presentant form in all molescing a receptated term constrained ware mixes effect the southout, and disability, whither sand abschlaft activity, abschlaft activity, abschlaft activity, abschlaft activity, abschlaft activity, abschlaft activity,								
Image: second biological	1.			25/8/2020		The method of producing silver nanoparticles using red sand may include the steps of adding red sand to water, mixing	USPTO	LIS 10751802
2 Mask Mohammed Akhvalatil Nours Statem Aldsami Award (state) 12279 7/20202 Metal oxide based radiation sensor In Addulating a precipitated reaction poticit including the information with standard antibios. SAIP SA 122.79 1 Abdulati Masset Aldbahmed Named Khulatil 1007/1500 201/25200 Metal oxide based radiation sensor In FIO2 for high in apre-induces a titalum dioxide (TiO2) thin film layer on microcantilever surface. In particular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide antibular of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide antibular of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the metal oxide based radiation sensor In antibular, the presentation of the presentation of the presentation of the presentation of t		Moudi Abdullah Rashed Alwehaibi	10751802		using red sand	the red sand in the water, removing a supernatant from the red sand in water mixture after the mixture has settled,		0310751802
Nous Saleen Akosani Xhaide during Cortan Charabi Await Almed HENDI Nous Saleen Akosani Await Almed HENDI Cont Cont Cont Cont Cont Cont Cont Cont		Jamilah Hamed Alshehri				adding sodium hydroxide to the supernatant to form an alkaline solution, adding silver nitrate (AgNO3) to the solution,		
Nous Saleen Akosani Xhaide during Cortan Charabi Await Almed HENDI Nous Saleen Akosani Await Almed HENDI Cont Cont Cont Cont Cont Cont Cont Cont	2	Manal Mohammed Alkhulaifi	12279	7/2/2023	-	and isolating a precipitated reaction product including the silver nanoparticles. The silver nanoparticles produced	SVID	
Image: Name of the Nuclei Alexand Alexand FNN0 Image: Name of FNN0 <t< td=""><td><u> </u></td><td></td><td>12270</td><td>TILILOLO</td><td></td><td></td><td>SAIF</td><td>SA 12279</td></t<>	<u> </u>		12270	TILILOLO			SAIF	SA 12279
Avail Amed KNDI Avail Amed KNDI Avail Amed KNDI Metal bx/de based reliation ensure A metal oxide based reliation ensure A metal oxide based reliation ensure Metal bx/de based reliation ensure USPTO USPTO <td></td> <td></td> <td></td> <td></td> <td></td> <td>according to this method have antibacterial activity, whether used afone of in combination with standard antibiotics.</td> <td></td> <td></td>						according to this method have antibacterial activity, whether used afone of in combination with standard antibiotics.		
Image: space of the s								
Hamad Adduzitz Molthen Khaled Zuizher Shamma 10571900 10571900 10571900<		Awatif Ahmed HENDI						
Hamad Adduzitz Molthen Khaled Zuizher Shamma 10571900 10571900 10571900<								
And Mail Adapting (109/1900)	1.	Abdullah Nasser Alodhayb		22/12/2020	Metal oxide based radiation sensor	A metal oxide based radiation sensor includes a titanium dioxide (TiO2) thin film layer on a microcantilever surface.	USPTO	110 10071000
Khaled Zouber Shamma Image: Councer Shamma		Hamad Abdulaziz Albrithen	10871580			The TiO2 thin film layer initially comprises anatase and rutile crystal structures. Exposure to radiation, such as gamma		03 108/1380
2 1 12690 15/3/2023 In particular, the resonant frequency changes with exposure to radiation dosages. The structural and mechanized and an exponent dosages. The structural and mechanized and an exposure to radiation dosages. The structural and mechanized and an exposure to radiation dosages. The structural and mechanized andemechanized and mechanice and mechanicon mechanized an		Khaled Zouher Shamma				radiation, results in changes in structural features and mechanical behaviors of the metal oxide based radiation sensor.		
Image: Control in the contro			40000	45/0/0000			0.415	
Image: Saleh Alsahi 209/2020 Calcium hydroxide nanoparticles synthesized with carob pulp extract myde framoparticles (Calcium-hydroxide nanoparticles) (Calcium-hydroxide nanoparticles (Calcium-hydroxide nanoparticles) (Ca	Ζ.		12690	15/3/2023			SAIP	SA 12690
Sandhansamy Devanean Rewan Ibrahim Salem Alkhald 10760111 Synthesized with carob puip extract with a diameter ranging from about 3122 nm. The Gui/OH 20Ps may be synthesized by beating ethylene glycol, adding calcium hydroxide is the ethylene glycol to second mixture, beating the first mixture of masser Rage Rashed Alghandi ON TO US 10780111 2 Hager Saad Abullah Allayed Nasser Rage Rashed Alghandi 12691 15/3/2023 synthesized with carob puip extract with a diameter ranging from about 3122 nm. The Gui/OB a first mixture, beating being third mixture, adding action the poly adding calcium hydroxide (MaOH) to the second mixture, adding action mydroxide (MaOH) to the second mixture to form a third mixture, form about 3122 mm. The Gui/OB a first mixture to form a third mixture, form about 3122 mm. The Gui/OB a first mixture to form a third mixture, form about 3122 mm. The Gui/OB a first mixture to form a third mixture, form about 3122 mm. The Gui/OB a first mixture to form a third mixture, form about 3122 mm. The Gui/OB a first mixture to form a third mixture, form about 3122 mm. The Gui/OB a first mixture to form a third mixture, factor mixture, adding a conditionent of the dual mixture, adding actionent adual mixture, adding actionent adual mixture, adding actionent adua						behaviors of the metal oxide based radiation sensor change proportionally with dosage within a range of dosages.		
Saturation between approximation of the symmetry mesoporous tital in the symetry mesoporous tital in the symmetry mesoporous tital in the symm	1.	Mohamad Saleh Alsalhi		22/9/2020	Calcium hydroxide nanoparticles	Calcium hydroxide nanoparticles (Ca(OH)2NPs) synthesized using carob pulp extract may be hexagonal nanoparticles	USPTO	115 10790111
2 Hajer Sad Adullah Algard Nasser Rage Rashed Alghtani Mohamed Ghazi Alkindi Osama Ghurmulah Mohamed Alghandi 12691 19/3/2023 adding a carob pulp aqueous extract to the first mixture to form a hixture, heating a colloi dedimixture, adding a corbo pulp aqueous extract to the first mixture to form a hixture, heating a colloi dedimixture, adding a corbo pulp aqueous extract to the first mixture to form a hixture, heating a colloi dedimet, extracting any unwated contaminants from the colloid sediment, and drying the colloid sediment, extracting any unwated contaminants from the colloid sediment to obtain Ca(0H)2NFs. SAIP SA 12691 1. Sardh Prasad Rajendra Mohamed Alghandi 10541506 Conjugated polymer laser with temperature-controlled power output temperature-controlled power output sede conjugated polymer asser medium to produce an output sets as docingated polymer asser medium to produce an output sets between approximately 325 LJ our a temperature-form floate mixture, soft may as poly-TPD(4B), dissolved in tolues. Poly-TPD(4B) has a long chains of the triphenylamine dimer- based conjugated polymer laser medium to polytiN/-bist-butyphylo-N. Nr. bisphenylamic/dime, known as poly-TPD(4B), dissolved in tolues. Poly-TPD(4B) has a long chains of the polytof POH, and approximately 455 LJ. Our a temperature- based conjugated polymer laser medium to polytiN/-Dist-butyphylo-N. Nr. bisphenylamine dimer- based conjugated polymer laser medium to polytiN/-Dist-butyphylo-N. Nr. bisphenylamine dimer- based conjugated polymer laser medium to polytiN/-Dist-butyphylo-N. Nr. bisphenylamine dimer- based conjugated polymer laser medium to polytiN/-Dist-butyphylo-N. Nr. bisphenylamine dimer- based conjugated polymer laser medium to polytiN/-Dist-butyphylo-N. Nr. bisphenylamine dimer- based conjugated polymer laser medium to not p		Sandhansamy Devanesan	10780111		synthesized with carob pulp extract	with a diameter ranging from about 31.22 nm to about 81.22 nm. The Ca(OH)2NPs may be synthesized by heating		03 10780111
2 Hajer Sad Adullah Algard Nasser Rage Rashed Alghtani Mohamed Ghazi Alkindi Osama Ghurmulah Mohamed Alghandi 12691 19/3/2023 adding a carob pulp aqueous extract to the first mixture to form a hixture, heating a colloi dedimixture, adding a corbo pulp aqueous extract to the first mixture to form a hixture, heating a colloi dedimixture, adding a corbo pulp aqueous extract to the first mixture to form a hixture, heating a colloi dedimet, extracting any unwated contaminants from the colloid sediment, and drying the colloid sediment, extracting any unwated contaminants from the colloid sediment to obtain Ca(0H)2NFs. SAIP SA 12691 1. Sardh Prasad Rajendra Mohamed Alghandi 10541506 Conjugated polymer laser with temperature-controlled power output temperature-controlled power output sede conjugated polymer asser medium to produce an output sets as docingated polymer asser medium to produce an output sets between approximately 325 LJ our a temperature-form floate mixture, soft may as poly-TPD(4B), dissolved in tolues. Poly-TPD(4B) has a long chains of the triphenylamine dimer- based conjugated polymer laser medium to polytiN/-bist-butyphylo-N. Nr. bisphenylamiptatione, merature- based conjugated polymer laser medium to polytiN/-bist-butyphylo-N. Nr. bisphenylamiptatione, merature- based conjugated polymer laser medium to polytiN/-Dist-butyphylo-N. Nr. bisphenylamiptatione, merature- based conjugated polymer laser medium to polytiN/-Dist-butyphylo-N. Nr. bisphenylamiptatione, merature- based conjugated polymer laser medium to polytiN/-Dist-butyphylo-N. Nr. bisphenylamiptatione, merature- based conjugated polymer laser medium to polytiN/-Dist-butyphylo-N. Nr. bisphenylamiptatione, merature- merature concentration of the poly-TPD(4B) has a long to polytiN/-Dista bouty protocides for wavelengthu ming- of the output		Rawan Ibrahim Salem Alkhalaf				ethylene glycol, adding calcium hydroxide to the ethylene glycol to provide a first mixture, heating the first mixture.		
L Nasser Rage Rage Rage Rage Rage Rage Rage Rage	2		12601	15/2/2022	4		CAID	
Nation National Mohammed Ghazi Alkindi National Multiple Median Model National Multiple Median Multi Multiple Median Multi Multiple Median Multipl	۷.		12031	15/3/2023			SAIP	SA 12691
Osama Ghurmullah Mohammed Alghamdi Conjugated polymer laser with temperature-controlled power output contaminants from the colloid sediment, and drying the colloid sediment to obtain Ca(OH)2NPs. USPTO US 10541506 1. Saradh Prasad Rajendra Mohamad Saleh Alsalhi Mamduh Jamil Aljadreh 10541506 21/1/2020 Conjugated polymer laser with temperature-controlled power output The conjugated polymer as the laser medium to produce an output laser beam having a beam energy tunable between approximately 325 (J) c and approximately 325 (J) c and approximately 625 (J) c and approximat								
Image: Note of the stand Prased Rajendra Saradh Prased Rajendra 21/1/2020 Conjugated polymer laser with temperature-controlled power output The conjugated polymer laser with based conjugated polymer as the laser medium to produce an output laser beam having a beam energy tunable between approximately 20 µJ and approximate								
Mohamad Saleh Alsalhi Mamduh Jamil Aljaafreh 10541506 temperature-controlled power output Mamduh Jamil Aljaafreh 10541506 US 10541506 2. 12692 15/3/2023 15/3/2023 based conjugated polymer as the laser medium to produce an output laser beam having a beam energy tunable between approximately 20 µJ and approximately 80° C. and approximately 10° L. and approximately 415 nm and		Osama Ghurmullah Mohammed Alghamdi				contaminants from the colloid sediment, and drying the colloid sediment to obtain Ca(OH)2NPs.		
Mohamad Saleh Alsalhi Mamduh Jamil Aljaafreh 10541506 temperature-controlled power output Mamduh Jamil Aljaafreh 10541506 US 10541506 2. 12692 15/3/2023 15/3/2023 based conjugated polymer as the laser medium to produce an output laser beam having a beam energy tunable between approximately 20 µJ and approximately 80° C. and approximately 10° L. and approximately 415 nm and								
Mohamad Saleh Alsalhi Mamduh Jamil Aljaafreh 10541506 temperature-controlled power output Mamduh Jamil Aljaafreh based conjugated polymer as the laser medium to produce an output laser beam having a beam energy tunable between approximately 20 µJ and approximately 325 µJ over a temperature range of the triphenylamine dimer- based conjugated polymer between approximately 40° C. and approximately 30° C. and approximately 60° C. The triphenylamine dimer- based conjugated polymer between approximately 40° C. and approximately 50° C. The triphenylamine dimer- based conjugated polymer between approximately 40° C. and approximately 50° MA not polyt,NN-bischenylbenylo-NN, ¹ -bisphenylbenylo-NN, ¹ -bisphenylbenylo-NN, ¹ -bisphenylbenylbenyl-NN, ¹ -bisphenylbenylbenyl-NN, ¹ -bisphenylbenylbenyl-NN, ¹ -bisphenylbenylbenyl-NN, ¹ -bisphenylbenylbenyl-ND, ¹ N, ¹ -bisphenylbenylbenylbenyl-ND, ¹ N, ¹ -bisphenylbenylbenylbenyl-ND, ¹ N, ¹ -bisphenylbenylbenylbenyl-ND, ¹ N, ¹ -bisphenylbenylbenylbenylbenylbenylbenylbenylb	1.	Saradh Prasad Rajendra		21/1/2020	Conjugated polymer laser with	The conjugated polymer laser with temperature-controlled power output uses a triphenylamine dimer-	USPTO	
Image: Mamduh Jamil Aljaafreh Image: Mamduh Jamil Aljaafreh between approximately 20 µJ and approximately 35 µJ over a temperature range of the triphenylamine dimerbased conjugated polymer between approximately 40° C. and approximately 85° C. The triphenylamine dimerbased conjugated polymer laser mediproximately 40° C. and approximately 85° C. The triphenylamine dimerbased conjugated polymer laser mediproximately 40° C. and approximately 40° C. and approximately 45° C. The triphenylamine dimerbased conjugated polymer laser mediproximately 40° C. and approximately 40° C. and approximately 40° C. The triphenylamine dimerbased conjugated polymer laser mediproximately 40° C. and approximately 45° C. The triphenylamine dimerbased conjugated polymer laser mediproximately 40° C. and approximately 45° C. The triphenylamine dimerbased conjugated polymer laser mediproximately 40° C. and approximately 45° C. The triphenylamine dimerbased conjugated polymer laser mediproximately 40° C. and approximately 410° Line (14%), provide in polymerbased polymerbased conjugated polymer laser mediproximately 40° C. and approximately 410° Line (14%), provide low mediproximately 410		Mohamad Saleh Alsalhi	10541506					05 10541506
2. 12692 15/3/2023 based conjugated polymer between approximately 40° C. and approximately 85° C. The triphenylamine dimerbased conjugated polymer laser moluen is a solution of polytNN-bis(4-butylphenyl)-NN-M-bisphenylbenzidine), providing temperature-based conjugated polymer laser moluence is a solution of the poly-TPD(4B) has a long side chain of butyl (C4H9), providing temperature-based conjugated polymer laser moluence is a solution of the poly-TPD in the solution is butyl (C4H9), providing temperature-based conjugated polymer laser moluence is to found with shorter chains of butyl (C4H9), providing temperature-based conjugated polymer laser moluence is to found with shorter chains of butyl (C4H9), providing temperature-based conjugated polymer laser moluence is to found with shorter chains of butyl (C4H9), providing temperature-based conjugated polymer laser moluence is to found with shorter chains of butyl (C4H9), providing temperature-based conjugated polymer laser molucin of the poly-TPD in the solution provides for wavelength tuning of the molar concentration of the poly-TPD in the solution provides for wavelength tuning of the molar concentration of the poly-TPD in the solution provides for wavelength tuning of the output laser beam between approximately 415 man ad approximately 415 man ad paproximately 415 man ad					in printer control print output			
Image: Instruction of the constraint of thydroxide ions and thydroxide ions of the constraint on the constr		maniaan oanni rigaanon	40000	45/0/0000	4		0.415	
1. Mohamed Ali Ghanem 11990 15/1/2023 Low-symmetry mesoporous titanium dioxide electrode The low-symmetry mesoporous titanium dioxide (Ism-TiO2) for use in an electrode for direct sensing of hydroxide ions at a lower potential than other metal electrodes. The oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale with the lism-TiO2 detects electrochemical oxidation of hydroxide ions subtrace ocale oxidation of hydroxide ions subtrace ocale oxidit hydroxide ions at a lower potential tha	2.		12692	15/3/2023			SAIP	SA 12692
Image: Section of the solution is between approximately 5 µM and approximately 15 µM and approx								0/112002
Image: Constraint of the poly-TPD in the solution is between approximately 5 µM and approximately 100 µM. Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution poly of the poly-TPD in the solution provide for direct selectrode for direct selectrode for direct selectrode for direct selectrode for direct selectrodes. The oxidation provides in selectrode for direct selectrodes. The oxidation process is inversible SA 11990 1 Mabrido Kaleh Ali Saleh 15/1/2023 Low-symmetry mesoporous titanium dioxide (ism-TiO2 detects electrodes micl oxidation of h						as poly-TPD(4B), dissolved in toluene. Poly-TPD(4B) has a long side chain of butyl (C4H9), providing temperature-		
Image: Constraint of the poly-TPD in the solution is between approximately 5 µM and approximately 100 µM. Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution provides for wavelength thing Image: Constraint of the poly-TPD in the solution poly of the poly-TPD in the solution provide for direct selectrode for direct selectrode for direct selectrode for direct selectrode for direct selectrodes. The oxidation provides in selectrode for direct selectrodes. The oxidation process is inversible SA 11990 1 Mabrido Kaleh Ali Saleh 15/1/2023 Low-symmetry mesoporous titanium dioxide (ism-TiO2 detects electrodes micl oxidation of h						dependent dimerization, which may not be found with shorter chains of butyl, such as in poly-TPD(4E) or poly-TPD(4M).		
Image: Constraint of the solution provides for wavelength tuning of the solution provides for wavelength tuning of the output laser beam between approximately 415 nm and approximately 445 nm. SAIP 1. Mohamed Ali Ghanem 11990 15/1/2023 Low-symmetry mesoporous titanium dioxide (Ism-TIO2) for use in an electrode for direct sensing of hydroxide ions Abdullah Mohamed Al-Mayouf Mabrook Saleh Ali Saleh SAIP SAIP Mabrook Saleh Ali Saleh								
Image: Constraint of the output laser beam between approximately 415 nm and approximately 415 nm and approximately 415 nm. 1. Mohamed Ali Ghanem 11990 15/1/2023 Low-symmetry mesoporous titanium dioxide (Ism-TiO2) for use in an electrode for direct sensing of hydroxide ions may be prepared by evaporation-induced self-assembly followed by two stages of annealing. An electrode main isolution by a oxidation process is irreversible SAIP								
1. Mohamed Ali Ghanem 11990 15/1/2023 Low-symmetry mesoporous titanium The low-symmetry mesoporous titanium dioxide (Ism-TiO2) for use in an electrode for direct sensing of hydroxide ions SAIP Abdullah Mohamed Al-Mayouf Abdullah Mohamed Al-Mayouf may be prepared by evaporation-induced self-assembly followed by two stages of annealing. An electrode molution of hydroxide ions at lower potential than other metal electrodes. The oxidation of hydroxide ions at a lower potential than other metal electrodes. The oxidation process is irreversible SAIP								
Abdullah Mohamed Al-Mayouf Mabrook Saleh Ali Saleh Saleh Ali Saleh								
Abouitan Monamed Al-Mayour dioxide electrode may be prepared by epropared by epropa	1.		11990	15/1/2023			SAIP	SA 11990
oxidation peak for hydroxide ions at a lower potential than other metal electrodes. The oxidation process is irreversible		Abdullah Mohamed Al-Mayouf			dioxide electrode	may be prepared by evaporation-induced self-assembly followed by two stages of annealing. An electrode made of a		<u>38 11990</u>
oxidation peak for hydroxide ions at a lower potential than other metal electrodes. The oxidation process is irreversible		Mabrook Saleh Ali Saleh				conductive substrate coated with the Ism-TiO2 detects electrochemical oxidation of hydroxide ion solution by an		
and and and an and an and and and and an								

					from 1.0 to 50 mM, the detection limit may be 0.05 mM and the current sensitivity may be 0.181 mA/mM. The peak current		
					is linearly dependent on alkaline solution pH and the dissociation constant of the hydroxide ion precursor. The electrode		
					can be used in hydroxide sensing performed in nitrate, fluoride, chloride or sulfate supporting electrolyte, which makes		
					the electrode a superior sensor for voltammetric hydroxide determination.		
1.	Mohammed Abdulaziz Al-Khamis		16/5/2023	Method and apparatus for storing energy	An energy storing system, which includes a plurality of weights; a first storing unit and a second storing unit, wherein	USPTO	US 49532
		49532			the first storing unit is arranged below the second storing unit and each of the storing units includes a guiding track on		0349332
					which weights can be placed and along which weights can be moved, wherein each of these guiding tracks includes a		
					first portion and a second portion, wherein the second portion is arranged below the first portion; and a loading unit		
					configured to lift at least one weight from the first storing unit to the second storing unit during a first period thereby		
					converting electrical energy to potential energy.		
1.	Saeed Mohammed AL-ZAHRANI	11638923	2/5/2023	Flotation reagents from acidic olive oil	The flotation reagents from acidic olive oil are made by transesterification of acidic olive oil. Acidic olive oil is olive oil	USPTO	
	Arfat Anis				having an acid value high enough to render it unsuitable for consumption, typically greater than 3.3% and/or between	00110	<u>US 11638923</u>
	Ranjan Kumar Dwari				3.3-7%. Transesterification of the olive oil with methanol converts fatty acids in the olive oil to an ester fraction and a		
	Hanjan Kumar Biran				glycerol fraction. The ester fraction may be sulfonated and used as the collector in a reverse flotation process,		
					selectively removing the carbonate gangue from phosphate-carbonate rock in the froth, leaving phosphates in the sink.		
					The glycerol fraction may be used without modification as the collector in the reverse flotation process. Both fractions		
					are highly selective for carbonates, substantially reducing loss of phosphates in the froth.		
1.	Taieb Aouak		4/4/2023	Extraction of benzene from	The extraction of benzene from benzene/cyclohexane mixture described herein is a process that removes benzene	USPTO	US 11617989
	Mohamed Ouladsmane	11617989		benzene/cyclohexane mixture	from a benzene/cyclohexane mixture with high selectivity, resulting in an enriched cyclohexane content in the retentate.		001101/000
	Ahmed Yacine Badjah Hadj Ahmed				The process involves adding an aqueous solution of poloxamer 188 to the benzene/cyclohexane mixture and waiting		
	Zeid Abdullah Alothman				for the mixture to partition into an organic layer above an aqueous layer. Benzene, being more polar than cyclohexane,		
					is selectively drawn into the aqueous layer. Benzene is then removed from the aqueous layer by pervaporation through		
					a composite PDMS (polydimethylsiloxane)/polystyrene membrane. Cyclohexane is recovered from the retentate by		
					drawing off the organic layer of the retentate by any known method. About 97% of benzene has been removed from a		
					50-50 wt % mixture by pervaporation in the static mode, and about 99% by pervaporation in the continuous mode.		
1.	Mu Naushad	11618004	4/4/2023	Melamine-formaldehyde derived porous	A melamine-formaldehyde derived porous carbon adsorbent may be prepared from melamine-formaldehyde derived	USPTO	
	Tansir Ahamad		11 112020	carbon adsorbent	porous carbon disposable products. The melamine-formaldehyde derived porous carbon effectively removes organic	00110	<u>US 11618004</u>
	Ayoub Abdullah Alqadami			carbon adsorbent	pollutants from aqueous media. Parameters of contact time, solution pH, initial adsorbate concentration and desorption		
	Ayman Abdelghafar Ahmed				rate affect efficacy. Adsorption capacities of exemplary melamine-formaldehyde derived porous carbon for MG and MB		
	Zeid Abdullah Alothman				dyes at 298 K were up to 25 mg/g and 35 mg/g, respectively.		
	Zeid Abdullan Abdullan				uyes at 250 K were up to 25 mg/g and 35 mg/g, respectively.		
1	Manal Ahmed Gasmelseed Awad	11617719	4/4/2023	Moringa oleifera nanoparticles	The Moringa oleifera nanoparticles may be synthesized by harvesting Moringa leaves, drying the Moringa leaves,	USPTO	
	Promy Virk	11017/10	41412020	Morniga oferiera nanoparticles	powdering the dried Moringa leaves, suspending the powdered Moringa leaves in a solution, and spraying the solution	03F10	<u>US 11617719</u>
	Mai Abdelrahman Elobeid Wagealla				into boiling water under ultrasonic conditions to obtain Moringa nanoparticles. The Moringa nanoparticles may be		
	Sarah Saleh Abdulla Alsaif				encapsulated by dissolving the Moringa nanoparticles and gum olibanum in ethanol to produce a mixture, injecting the		
	Awatif Ahmed HENDI						
					inert organic phase of the mixture into an aqueous solution containing PVA, and homogenizing the aqueous solution.		
	Khalid Mustafa Osman Ortashi				The Moringa nanoparticles may be useful in preventing the growth of cancer cells and in treating diabetes by inhibiting		
	Rabia Qindeel				α-glucosidase and/or α-amylase activity.		
			16/3/2021				
1.	Hany M. Yehia		16/3/2021	Method of synthesizing custard apple	The custard apple peel nanoparticles may be manufactured by extracting custard apple peels in a solvent, spraying the	USPTO	US 10946055
	Hatem Salama ALI	10946055		peel nanoparticles	custard apple peel extracts into boiling water under ultrasonic conditions to produce a first mixture, sonicating the		
	Ebtesam Mohammed Al Olayan				mixture, stirring the mixture, and drying the mixture to obtain custard apple peel nanoparticles. In an embodiment, the		
2.	Manal Fawzy Elkhadragy	11031	2/10/2022	1	custard apple peel may be peel of Annona reticulata. In an embodiment, the custard apple peel nanoparticles may have	SAIP	SA 11031
	Mohamed Fekry Mansour Serag Eldin				improved antibacterial or antioxidant properties.		<u>34 11031</u>
	Manal Ahmed Awad						
1.	Abdullah Mohammed Al-Mayouf	10488323	26/11/2019	Steel panel with an integrated corrosion	The steel panel with an integrated corrosion sensor is a steel panel having an integrated sensor for monitoring	USPTO	US 10488323
	Matar Naif Al-Shalwi			sensor	dissolution of a magnetite layer during acid cleaning of the steel panel. The steel panel has an opening formed		03 10400323
					therethrough, and a hollow insulator is secured to the steel panel within the opening. The hollow insulator is formed		
2.		11602	6/12/2022	4	from an electrical insulation material and electrically isolates the steel panel from a steel core, which is mounted within	SAIP	
£.		11002	0/12/2022		the hollow insulator. A reference electrode is positioned near the steel panel. A voltmeter is electrically connected	SAIF	<u>SA 11602</u>
					between the reference electrode and a first surface of the steel core. An opposed second surface of the steel core has		
					a layer of magnetite formed thereon. An alarm is in electrical communication with the voltmeter, such that the alarm		
					generates an alarm signal when the voltmeter detects a corrosion potential at a preset threshold potential.		
1	Wajhul Qamar	+	25/2/2020		The testing chamber for laboratory animals includes multiple testing points to provide multiple tests and testing zones	LIEPTO	
Г.		10500000	25/2/2020			USPTO	US 10568300
	Mohammad A. Altamimi	10568300			within the same chamber. The testing chamber for laboratory animals provides for study, testing and assessment of		
					cognitive and motor skills of laboratory test subjects, such as mice, rats and the like. The multiple tests performed within		

2.		1609	7/12/2022	Testing chamber for laboratory animals	the testing chamber may be used for an overall characterization of the neurobehavioral activities of the test animals. The testing chamber for laboratory animals includes a housing divided into first and second zones. A beam for balance beam-style travel from the first zone to the second zone is provided. A volume of water may be contained in the first	SAIP	<u>SA 11609</u>
					zone, and the second zone may contain platforms and ramps for the laboratory animal to travel over. A passage from		
1	Tansir Ahamad		24/3/2020	Method of making a payous pitragen	the first zone to the second zone may be further provided.	LICOTO	
1.	Mu. Naushad	10600583	24/3/2020	Method of making a porous nitrogen- doped carbon electrode from biomass	The method of making a porous nitrogen-doped carbon electrode from biomass is a chemical activation- based method of making a porous graphite carbon electrode for supercapacitors and the like. Date palm pollen grains	USPTO	US 10600583
	Abdullah M. Al-Enizi	10000363		doped carbon electrode from biomass			
	Saad M. Alshehri		1011110000		are used as a precursor biomass carbon source for producing the porous graphite carbon. A volume of date palm (Phoenix dactylifera L.) pollen grains is mixed into an aqueous solution of potassium hydroxide to		
2.	Saau W. Alsheim	11416	16/11/2022		produce a precursor carbon solution. The precursor carbon solution is dried to produce precursor carbon, and the	SAIP	SA 11416
					precursor carbon is heated in an inert atmosphere to produce produce precursor carbon, and the		
					The porous nitrogen-doped graphite carbon is washed, dried and mixed with a polyvinylidene difluoride		
					binder, carbon black, and a solvent to form a slurry. The slurry is then coated on nickel foam to form a porous nitrogen-		
					doped carbon electrode. The porous nitrogen-doped carbon electrode is dried, weighted and pressed		
					into a sheet electrode.		
1.	Abdulrahman Ibrahim Almansour		17/3/2020	Spirooxindole-pyrrolothiazole	The spirooxindole-pyrrolothiazole heterocyclic hybrids are compounds having the formula:	USPTO	116 105001 17
	Suresh Kumar Raju	10590147		heterocyclic hybrids	H		<u>US 10590147</u>
	Arumugam Natarajan				N O S		
2.	Rajapandiyan Krishnamoorthy	11032	2/10/2022		\sim / $\langle \mathcal{M} \rangle$	SAIP	64 11022
	Ali A. Alshatwi					•••••	<u>SA 11032</u>
					$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $		
					HN H		
					R R		
					1 -0		
					- W		
					li Ì		
					\checkmark		
					R' R		
					6a, R = H, R' = F		
					6b, R = F, R' = H		
					50, K 1, K 11		
					wherein R is hydrogen and R' is fluorine (compound 6a) or R is fluorine and R' is hydrogen (compound 6b). The hybrids		
					may be obtained using a chemical synthesis process involving 1,3-dipolar cycloaddition of 3,5-bis(4/2-fluoro-		
					benzylidene) piperidin-4-ones with isatin and 4-thiazolidinecarboxylic acid in a suitable solvent, preferably 1-butyl-3-		
					methyl-imidazolium bromide ("[bmim]Br"), and preferably under microwave irradiation. Both of these new hybrids		
					demonstrate antimicrobial activity against both gram positive and gram negative drug resistant and non-resistant		
					bacterial pathogens, although compound 6a exhibits more potent antibacterial activity than compound 6b.		
1.	Zeyad Abdulwahid Ghaleb Haidar		27/10/2020	Multi-piston bladeless wind turbine	The multi-piston bladeless wind turbine creates electrical energy using hydraulically connected pistons. The system	USPTO	
		10815965			may include a disk, a small piston in fluid communication with a large piston, and a crankshaft attached to the large	-	<u>US 10815965</u>
					piston. The disk transfers forces from the wind to the small piston. Hydraulic fluid then transfers the forces to the larger		
2.		11600	6/12/2022	1	piston. When the disk and associated small piston have been forced to the end of their stroke by the wind, a gate in the	SAIP	64.44600
					disk is opened to reduce wind force on the disk by allowing air to travel through the disk. Subsequently, the disk and	<i>c.</i>	<u>SA 11600</u>
					associated small piston are pushed back to the beginning of the stroke by the pressure created by the large piston's		
					weight. This process is repeated by closing the gate in the disk. A crankshaft powering an electric generator is turned		
					by the movement of the large piston.		
1.	Manal Ahmed Gasmelseed Awad		2/3/2021	Method of making zinc oxide	The method of producing zinc oxide nanoparticles (ZnO NPs) using red sand includes mixing red sand with water to	USPTO	US 10934175
	Ali Kanakhir Aldalbahi	10934175		nanoparticles using red sand	form an aqueous suspension of red sand, removing the supernatant from the suspension, centrifuging the supernatant		03 10324112
	Khalid Mustafa Osman Ortashi				and retaining a second supernatant from the centrifuged suspension, dissolving a solution of zinc nitrate in the second		
L							

2.	Taghrid Saad Omar Alomar Najla Saad Almasoud	11498	28/11/2022		supernatant to form a precursor solution, and adding 1M NaOH dropwise to the precursor solution to precipitate the zinc oxide nanoparticles. The precipitate may be washed, dried and calcined to provide the red sand synthesized ZnO NPs. The red sand synthesized ZnO NPs have photocatalytic activity and can be used, for example, to degrade organic dyes in aqueous environments.	SAIP	<u>SA 11498</u>
1.	Ehab Salaheldin Awad Mohamed	10048441	14/8/2018	Variable optical splitter system	The variable optical splitter system includes a V-shaped optical splitter for use in planar lightwave circuits (PLCs), photonic integrated circuits (PICs), etc. The V-shaped optical splitter has first and second optically transmissive branches sharing a common optically transmissive base, where the first and second optically transmissive branches	USPTO	<u>US 10048441</u>
2.		11033	2/10/2022		each define an optical waveguide. The first and second optically transmissive branches are symmetrically angled about a central longitudinal axis. A light source directs a light beam to a laterally extending input surface of the optically transmissive base. The light beam travels parallel to the central longitudinal axis. The optical power splitting ratio is directly proportional to the input beam's displacement from the central longitudinal axis, permitting selective tuning of the ratio during design of the splitter.	SAIP	<u>SA 11033</u>
1.	Shaker Saeed Abdullah-Alaqel Nader Shaif Esmail Saleh Rageh Saadallah Ali Saeed	10788021	29/9/2020	Particle-to-working fluid heat exchanger and solar power generator using the same	The particle-to-working fluid heat exchanger is a particle-to-working fluid counter-flow direct contact heat exchanger formed from a heat exchange chamber having opposed upper and lower ends. A diameter of the heat exchange chamber decreases from the upper end to the lower end, with a fluid inlet positioned adjacent the lower end for receiving a stream from the upper end to the lower end, with a fluid inlet positioned adjacent the lower end for receiving a stream from the upper end to the lower end, with a fluid inlet positioned adjacent the lower end for receiving a stream from the upper end to the lower end for the lower end fo	USPTO	<u>US 10788021</u>
2.	Eldwin Djajadiwinata Abdulelah Ibrahim Abdulaziz Alswaiyd Hany Abdulrahman AL-ANSARY Sheldon Moseley Jeter Abdelrahman Mahmoud Elleathy Obida Mohamed Zeitoun Zeyad Abdurhman Alsuhaibani Syed Noman Danish Said Ibrahim Abdel-Khalik Saeed Mohammed AL-ZAHRANI	11028	2/10/2022		of fluid. The stream of fluid is tangentially and upwardly directed within the heat exchange chamber. The heat exchange chamber also has a fluid outlet positioned adjacent the upper end thereof. A distribution manifold for the heat exchange chamber produces a plurality of streams of heated particles which exchange thermal energy with the stream of fluid to generate a stream of heated fluid and a volume of cooled particles. A solar power generator, in the form of a solar tower, is further provided, which incorporates the particle-to-working fluid counter-flow direct contact heat exchanger.	SAIP	<u>SA 11028</u>
1.	Muhammad Khurram Khan Tengfei WU Leng Lu	11501580	15/11/2022	Methods and systems for implementing secure blometric recognition	The present disclosure provides a method for facilitating implementing biometric recognition. Further, the method may include receiving two or more biometric images of one or more biometric identifiers of one or more individuals from one or more devices. Further, the two or more biometric images may be in two or more spectrums. Further, the method may include analyzing the two or more biometric images using one or more deep hashing network models. Further, the method may include extracting two or more discriminative deep hashing codes from the two or more biometric images based on the analyzing. Further, the method may include generating a biometric template based on the two or more discriminative deep hashing codes. Further, the method may include generating a biometric template based on the one or more biometric identifiers using a fuzzy commitment scheme based on the biometric two plate. Further, the method may include storing the biometric key.	USPTO	<u>US 11501580</u>
1.	Rabab Abd El Moneim Khalil El Dib Shaza Mohamed Adel Al-Massarani Manal Ahmed Gasmelseed Awad	10947266	16/3/2021	Synthesis of ursolic acid nanoparticles	The synthesis of ursolic acid nanoparticles includes dissolving ursolic acid powder in methanol, boiling water for five minutes, and adding the methanol solution to the boiled water dropwise at a flow rate of 0.1-0.3 ml/min under ultrasonic conditions. After sonication for 20 minutes, the contents are stirred for about 15 minutes, and then dried. Particle size	USPTO	<u>US 10947266</u>
2.	Ali Ali Hasan Elgamal	10808	13/9/2022		distribution studies and TEM micrographs confirm the resulting product comprises nanoparticles. In vitro testing confirms the ursolic acid nanoparticles exhibit greater anticancer activity than conventional-size particles, and that the nanoparticles exhibit antimicrobial effect against gram positive and gram negative bacteria, as well as fungi.	SAIP	<u>SA 10808</u>
1.	Khalid Mustafa Osman Ortashi Manal Ahmed Gasmelseed Awad Awatif Ahmed HENDI	10856559	8/12/2020	Method of producing eggshell-derived nanoparticles	The method of producing eggshell-derived nanoparticles may include steps of adding eggshell powder to methanol to form a solution; adding the solution dropwise to boiling water under ultrasonic conditions; incubating the resulting solution under continuous stirring at 200-800 rpm; and drying the resulting solution to obtain the eggshell-derived	USPTO	<u>US 10856559</u>
2.		10839	14/9/2022		nanoparticles. The method produces nanoparticles of between 5 and 100 nm. Cytotoxicity testing shows that the nanoparticles exhibit anticancer activity against human breast cancer and lung cancer cell lines.	SAIP	<u>SA 10839</u>
1.	Manal Ahmed Gasmelseed Awad Awatif Ahmed HENDI Khalid Mustafa Osman Ortashi	10184033	22/1/2019	Synthesis of silver-PMMA nanocomposite film	The synthesis of a silver-PMMA nanocomposite film includes mixing an aqueous extract of Trigonella foenum-graecum (also known as Helba and fenugreek) seeds with an aqueous solution of silver nitrate, thereby reducing the silver ions to silver metal nanoparticles. A solution of the silver nanoparticles is added to a solution of PMMA [poly (methyl	USPTO	<u>US 10184033</u>
2.	Amnah Bader Alanazi Batool Ali Marzouq Alzhrani Dina Wafiq Awad Soliman	10511	4/8/2022		methacrylate) in N [®] N-dimethylformamide (DMF) with stirring at 90° C. A light brown solution of silver colloids develops, which is cast in a glass plate and the DMF is evaporated at room temperature, leaving a silver-PMMA nanocomposite film. Testing on water shows the silver-PMMA nanocomposite film prevents or inhibits growth of microbes, suggesting use as an antimicrobial or antibacterial agent, e.g., in water purification.	SAIP	<u>SA 10511</u>
1.	Veeramani Chinnadurai Khalid S. Al-Numair Mohammed A. Alsaif	10729719	4/8/2020	Fruit-derived core-shell nanospheres	The fruit-derived core-shell nanospheres uses mixing silver nitrate and Pouteria caimito extract as a method for the green synthesis of silver nanoparticles, followed by coating the nanoparticles with silica. These core-shell nanospheres may be produced by aqueous extraction of dried P. caimito fruit and mixing and incubating the resulting P. caimito	USPTO	<u>US 10729719</u>

2		10986	26/9/2022		extract with silver nitrate to produce a nanoparticle composition including the silver nanoparticles. The nanoparticles	SAIP	
۷.		10900	20/9/2022			SAIP	SA 10986
					may be subsequently coated with silica by mixing with a silica precursor. The core-shell nanospheres show activity		
					against oral cancer.		
1.	R. Jothi Ramalingam		10/11/2020	Method of preparing biogenic silver	The method of preparing biogenic silver nanoparticles includes preparing an aqueous plant extract by boiling cut	USPTO	US 10828328
	Hamad Al Lohedan	10828328		nanoparticles	leaves of Alternanthera bettzickiana (Regel) G. Nicholson in distilled water, retaining the aqueous extract. The aqueous		05 10020520
					plant extracts were mixed with aqueous solutions of silver ions derived from different silver salt precursors		
2.		10838	4/9/2022		(e.g., silver nitrate, silver sulfate, etc.). The resulting biogenic silver nanoparticles exhibit antimicrobial activity against	SAIP	
					various strains of gram-positive and gram-negative organisms, including some strains of drug-resistant	0/til	SA 10838
					microorganisms. The biogenic silver nanoparticles also exhibit anticancer activity against certain human cancer cell		
					lines. Surprisingly, biogenic silver nanoparticles prepared from nitrate precursor exhibited greater anticancer activity		
					than nanoparticles from sulfate precursor, while biogenic silver nanoparticles prepared from sulfate precursor		
					exhibited greater antibacterial activity than nanoparticles from nitrate precursor.		
1.	Husain Abbas		19/11/2019	System for constructing a retaining wall	The system for constructing a retaining wall can be used to construct a segmental retaining wall for retaining earth, on	USPTO	US 10480149
	Abdullah H. Alsabhan	10480149			either side, at two different levels. The system includes a plurality of blocks. Each block has laterally opposed first and		03 10480149
	Yousef A. Al-Salloum				second end portions, a central portion and a neck portion. The central portion is positioned between the first end portion		
2	Abobaker S. Binyahya	10989	27/9/2022	-	and the neck portion, and the neck portion is positioned between the second end portion and the central portion. The	SAIP	
۷.	Aboballer e. Billyanya	10909	211912022		central portion has a longitudinal length less than a longitudinal length of the first end portion, the second end portion	SAIP	SA 10989
					has a longitudinal length less than the longitudinal length of the central portion, and the neck portion has a longitudinal		
					length less than the longitudinal length of the second end portion. A plurality of pegs can vertically interlock adjacent		
					blocks. Tie connectors can connect the blocks to an external pipe.		
1.	Manal Ahmed Gasmelseed Awad		17/10/2017	Synthesis of adansonia digitata	A method of preparing Adansonia digitata nanoparticles includes dissolving Adansonia digitata plant powder in an	USPTO	110 07001 10
	Awatif Ahmed HENDI	9789146		nanoparticles	organic solvent to form a solution; spraying the solution in boiling water while applying ultrasonic energy to form a		<u>US 9789146</u>
	Khalid Mustafa Osman Ortashi				mixture; and stirring the mixture for at least about 15 minutes at a speed of about 200-800 rpm to obtain the Adansonia		
-	Inialia Mastara Osiliari Ortasili				digitata nanoparticles.		
2.		10461	28/7/2022		ugitata nanoparticles.	SAIP	SA 10461
							0/110101
1.	Zeyad Abdulwahid Ghaleb Haidar		22/1/2019	Solar desalination system	The solar desalination system is a hybrid system combining a Fresnel solar concentrator with a solar desalination still.	USPTO	LIC 10102222
		10183233			The solar still includes an absorber base, at least one sidewall, and a hollow cover. The hollow cover has an inlet port		<u>US 10183233</u>
					for receiving seawater such that the seawater passes through an interior of the hollow cover and exits through at least		
					one outlet port into an open interior region of the solar still. At least one collection duct is secured to an inner face of		
					the at least one sidewall for collecting pure water condensate. A vacuum pump is in communication with the open		
					interior region of the solar still through a vacuum port for selectively lowering the pressure within the open interior region		
					of the solar still. The solar still is suspended above a linear Fresnel reflector array such that the absorber base is		
					positioned at a focal point thereof.		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
		1		1			

2.		10462	28/7/2022	-		SAIP	SA 10462
1.	Hany Mohamed Yehia		10/12/2019	Synthesis of black eggplant (Solanum	The black eggplant skin antioxidant nanoparticles may be manufactured by extracting black eggplant skins in a solvent,	USPTO	<u>US 10500244</u>
	Mohamed Fekry Serag El-Din Hatem Salama Mohamed Ali	10500244		melongena) skin antioxidant nanoparticles	spraying the black eggplant skin extracts into boiling water under ultrasonic conditions to produce a first mixture, sonicating the mixture, stirring the mixture, and drying the mixture to obtain black eggplant skin antioxidant		03 10300244
2.	Mohamed Saleh Alamri Wafa Abdullah Al-Megrin Manal Fawzy Elkhadragy Manal Ahmed Gasmelseed Awad	10987	26/9/2022		nanoparticles. In an embodiment, the black eggplant skin may be skin of Solanum melongena. In an embodiment, the black eggplant skin nanoparticles may have improved antibacterial or antioxidant properties.	SAIP	<u>SA 10987</u>
1.	Manal Ahmed Gasmelseed Awad Promy Virk Rabia Qindeel	10398744	3/9/2019	Synthesis of mustard seed nanoparticles	The mustard seed nanoparticles may be synthesized by washing mustard seeds, drying and crushing the washed mustard seeds, extracting the crushed mustard seeds to produce a mustard seed extract, spraying the mustard seed extract into boiling water, sonicating the mustard seed extract and boiling water mixture, and	USPTO	<u>US 10398744</u>
2.	Khalid Mustafa Osman Ortashi Mai Abdelrahman Elobeid	9723	10/4/2022	•	centrifuging the mustard seed extract and boiling water mixture to obtain mustard seed nanoparticles. The mustard seed nanoparticles may be used in a pharmaceutical composition.	SAIP	<u>SA 9723</u>
1.	Manal Ahmed Gasmelseed Awad Rabia Qindeel Khalid Mustafa Osman Ortashi	10384945	20/8/2019	Method of producing silica nanoparticles using sand	A method of producing silica nanoparticles using sand can include mixing white sand with H2SO4 and H3PO4 to form a mixture. The mixture can be stirred in an ice bath. KMnO4 can then be added to the mixture while maintaining the temperature of the mixture below 5° C. The resulting suspension can be reacted for about 3 hours to about 5 hours on	USPTO	<u>US 10384945</u>
2.	Awatif Ahmed HENDI	9728	10/4/2022		ice. The suspension is stirred in an ice bath and then maintained in a water bath at a temperature of 40° C. for about 90 minutes to about 120 minutes. Afterwards, the temperature is adjusted to and maintained at 98° C. for another period of about 90 minutes to about 120 minutes while adding water. H2O2 can be added to the suspension after adding the water to produce a reaction product with a precipitate. The reaction product can then be dried and calcinated to provide the silica nanoparticles.	SAIP	<u>SA 9728</u>
1.	bander saud hamoud aldoheim	9929	8/5/2022	Method of preparing an art watercolor containing nano-pigment	The researcher conducted a scientific experiment, subjecting it to scientific standards to achieve nano colors by understanding the extent of the effect of nano grinding method on the structural composition of the traditional red color in order to improve its formative capabilities and benefit from nano technology in enhancing the processes related to the design structure of the contemporary decorative panel (enriching the decorative panel with scientific discoveries and technological developments). The experiment included a sample of 20 students from the College of Education, Department of Art Education at King Saud University. The sample was divided into two groups, a control group and an experimental group. The decorative shape was colored using old watercolors and watercolors with nanotechnology. The experiment found statistically significant differences at a level of (0.05) or less between the average ranks of the pre and post measurements for the experimental group. There were also statistically significant differences at a level of 0.01 or less between the experimental and control groups in the post measurement. As the experiment results showed, the watercolor with nanotechnology features precise color characteristics that enhance its effectiveness in gradient shading, thus helping to add a bright color to the shape.	SAIP	<u>SA 9929</u>

1.	Mohamad Saleh Alsalhi	10000	15/5/2022	Synthesis of silver nanoparticles using	A method of synthesizing silver nanoparticles includes using sesame (Sesamum indicum) oil cake extract as a reducing	SAIP	64 10000
1	Sandhanasamy Devanesan			sesame oil cake	agent. The silver nanoparticles can range in size from about 6 nm to about 15 nm. The silver nanoparticles can have an		<u>SA 10000</u>
	Akram Ahmed Alfuraydi				average particle size of about 10 nm.		
	Mysoon M.F. Al-Ansari						
1.	Ali Ali Hassan Elgamal	10086027	2/10/2018	Green synthesis of katononic acid	The synthesis of katononic acid nanosheets is a method of extraction of katononic acid from the n-hexane fraction	USPTO	US 10086027
	Manal Ahmed Gasmelseed Awad			nanosheets	of Nuxia oppositifolia. The katononic acid isolated from N. oppositifolia may be suspended in methanol and added		03 10086027
	Rabab El Dib				dropwise to boiling water, sonicated, stirred, and freeze dried to form katononic acid nanosheets. These katononic acid		
2	Shaza Mohamed Adel Al-Massarani	9998	15/5/2022	-	nanosheets may be used to kill cancer cells or microorganisms.	SAIP	
_	Omer Ahmed Basudan					0/11	<u>SA 9998</u>
1.	Manal Ahmed Gasmelseed Awad	9750	13/4/2022	Method of synthesizing antimicrobial	The method of synthesizing antimicrobial silver nanoparticles using pigeon dung includes collecting pigeon dung and	SAIP	64.0750
	Manal Mohammed Alkhulaifi			silver nanoparticles using pigeon dung	suspending the pigeon dung in water to produce a pigeon dung aqueous extract, filtering the pigeon dung aqueous		<u>SA 9750</u>
	Ali Kanakhir Aldalbahi				extract, adding a solution including a silver source to the pigeon dung aqueous extract to produce a mixture, and		
	Noura Saleem Aldosari				resting the mixture to allow silver nanoparticles to form. In an embodiment		
	Shaykha Mohammed Alzahiy				the antimicrobial pigeon dung nanoparticles may be incorporated in a pharmaceutical composition.		
1	onayina monannea / izany						
1.	Ayman Sadek Ahmed El-Faham		23/1/2018	Synthesis of metal nanoparticles using	The synthesis of metal nanoparticles using a modified mPEG (methoxypolyethylene glycol) polymer includes the steps	USPTO	110 0072452
1	Zeid Abdullah Mohammed Al Othman	9873153		modified MPEG polymer	of: preparing a methanolic solution of a polymer; providing an aqueous solution including a metal salt; and combining		<u>US 9873153</u>
i	Sameh Mohamed Mahmoud Osman				the methanolic solution of the polymer with the aqueous metal salt solution to produce the metal nanoparticles, where		
2.		9722	10/4/2022	-	the metal salt is AgNO3, CuCl2, NiCl2, CoCl2, Pd(Ac)2, or HAuCl4 and wherein the metal nanoparticles are silver, copper,	SAIP	
2.		9722	10/4/2022		cobalt, palladium, nicker or gold nanoparticles having a size between 1 nm and 100 nm in diameter.	SAIP	SA 9722
1.	Ali Abdullah Alshatwi	9721	10/4/2022	Fortified date fruit product	A fortified date fruit product includes date fruit sugar and one or more mineral phosphate nanostructures. The mineral	SAIP	
	Jegan Athinarayanan	5721	10/4/2022	i onnied date nuit product	phosphate nanostructures can be selected from one or more of calcium phosphate, zinc phosphate, and iron phosphate	SAIF	<u>SA 9721</u>
	Periasamy Vaiyapuri Subbarayan				nanostructures, among others. The mineral phosphate nanostructures can have a particle size ranging from about 5 nm		
	renasaniy valyapun oubbarayan				to about 100 nm, e.g., about 5 nm to about 20 nm, about 50 nm to about 100 nm, and about 75 nm to about 100 nm.		
1							
1.	Mohd Aftab Alam		13/8/2019		The apparatus for inoculating agar plates includes a spray chamber having an upper opening for receiving an atomized	USPTO	110 400 70040
	Fahad Ibrahim Al-Jenoobi	10379016			microbial suspension and a lower opening for receiving an agar plate. The apparatus also includes an atomizer		<u>US 10379016</u>
	Mohamed Hamed M. Al-Agamy				including a reservoir and a fluid tube for delivering the microbial suspension to the atomizer nozzle. A containment		
2		9725	10/4/2022	Apparatus for inoculating agar plate	feature extends around an inner surface of the spray chamber to catch any drop that may form on its inner wall and	SAIP	
۷.		5725	10/4/2022	Apparato for moodating agai plate	advance down towards the lower opening. The spray chamber allows multiple agar plates to be quickly inoculated	SAIF	SA 9725
					without cross-contamination of agar habitats, without contaminating the outside of the plates, and without		
					contaminating the work area.		
	Mohd Aftab Alam		25/6/2019	Apparatus and method for testing the	The apparatus and method for testing the ability of materials to protect photolabile materials provides an accurate	USPTO	
ι.	Fahad Ibrahim Al-Jenoobi	10330596	20/0/2019	ability of materials to protect photolabile	ne apparatus and method for testing the ability of materials to protect protolabile materials provides an accurate measurement by directly observing the degradation level in a photolabile material. The apparatus is an assembly having	03510	US 10330596
i	Fanao Ibranim Al-Jenoobi	10330390		ability of materials to protect photolable materials	primary and secondary cells and a light source. The primary and secondary cells are arranged in different configurations		
		0000	01510000	materiais	primary and secondary cells and a light source. The primary and secondary cells are arranged in different configurations with respect to one another such that any light that reaches the photolabile materials must first go through the protective		
2.		9930	8/5/2022		material under test. The method includes placing a protective material under test in the primary cell; placing a	SAIP	SA 9930
i					photolabile material in the secondary cell; subjecting the assembly to a light source for a predetermined amount of time;		
1					and removing and testing the photolabile material for degradation.		
	Abd El-Galil E. Amr		22/5/2018	Pentacyclic triterpenoidal derivatives	A pentacyclic triterpenoidal derivative can include 3,11-dioxo-24(phenyl)-urs-12-en-24-one (4), 24-norurs-12-en-	USPTO	
·.	Mohamed A. Al-Omar	9975917	22/0/2010	r entacyone interpenoidar derivatives	24(phenyl)-3,11-dione (5), 3,11-dioxo-24(Phenyl)-urs-1,12-diene-24-one (6), or 24-nor-urs-1,12-diene-24(phenyl)-3,11-	03-10	<u>US 9975917</u>
i	Ahmed M. Naglah	33/33//			24(pienty)-5, 11-dione (5), 5, 11-diox0-24(Pienty)-dis-1, 12-diene-24-one (6), di 24-ndr-dis-1, 12-diene-24(pienty)-5, 11- dione (7). The pentacyclic triterpenoidal derivative demonstrates highly potent 5-lipoxygenase inhibition activity.		
2	Annieu W. Nagian	9997	15/5/2022	4	cione (r). The pentacyclic interpendidal derivative demonstrates inging potent 5-hpoxygenase initiol(ion activity.	CAID	
2.		9997	15/5/2022			SAIP	SA 9997
1							
⊢	Zevad Abdulwahid Ghaleb Haidar	10233095	19/3/2019		The color decellination and newer generating system is a hybrid system combining a Freerick select concentrator with a	USPTO	
Г.	Zeyad Abdulwanio Gnaleb Haidâr	10233095	18/3/5018		The solar desalination and power generating system is a hybrid system combining a Fresnel solar concentrator with a	05210	US 10233095
1		1		1	solar desalination still, and further including at least one concentrating photovoltaic cell for simultaneously generating		
1 1					electrical power. The solar still includes an absorber base, at least one sidewall, and a hollow cover. The hollow cover		

2.		9437	28/2/2022	Solar desalination and power generating system	has an inlet port for receiving seawater, which passes through an interior of the hollow over and exits through at least one outlet port into an open interior region of the solar still. At least one collection duct collects pure water condensate. A vacuum pump selectively lowers the pressure within the open interior region of the solar still. The solar still is suspended above a linear Fresnel reflector array such that the at least one concentrating photovoltaic cell, mounted to a lower surface of the absorber base, is positioned at a focal line thereof.	SAIP	<u>SA 9437</u>
1.	Manal Ahmed Gasmelseed Awad Awatif Ahmed HENDI Khalid Mustafa Osman Ortashi Nawal Ahmad Abdu Madkhali	9518	13/3/2022	Dye-sensitized solar panel	A dye-sensitized solar panel includes a titanium nanoparticle layer and a plant-derived photo-sensitizer supported on the titanium nanoparticle layer. The photo-sensitizer can be extracted from chard (the cicla cultivar group of B. vulgaris subsp. cicla), and the titanium nanoparticle layer includes titanium nanoparticles synthesized using henna (Lawsonia inermis). The titanium nanoparticle layer can, in addition to titanium nanoparticles, include zinc oxide nanoparticles.	SAIP	<u>SA 9518</u>
1.	RAJABATHAR JOTHI RAMALINGAM JUDITH VIJAYA HAMAD AL-LOHEDAN SIVA CHIDAMBARAM	119410172	2021-10-17	METHOD OF MAKING A SUPERCAPACITOR USING POROUS ACTIVATED CARBON FROM COW DUNG	The method of making a supercapacitor using porous activated carbon from cow dung includes converting cow dung to porous activated carbon by, in a first step, preparing the dung waste by washing and drying the dung waste, and heating the dung waste in a vacuum environment to form pre-carbonized carbon. In a second step, the pre-carbonized carbon is impregnated with phosphoric acid to form a slurry, which is dried, ground, and heated in a vacuum to between 600-900°C to form porous activated carbon. The porous activated carbon is mixed with a binder, acetylene black, and an organic solvent to form a paste, which is dried on a conductive metal foil to form an electrode. Two such electrodes (an anode and cathode) are coated with an electrolyte gel (e.g., aqueous potassium hydroxide) and separated by a polymer (e.g., PTFE) membrane to form the supercapacitor.	SAPTO	<u>SA119410172+</u>
1.	TANSIR AHAMAD SAAD ALSHEHRI ABDULLAH AL-ENIZI MU NAUSHAD	118400265	2021-12-05	Oxygen Reduction Reaction Electrocatalyst	The oxygen reduction reaction electrocatalyst is a Pt/N/C electrocatalyst that provides an efficient ORR catalyst suitable for use in polymer electrolyte membrane (PEM) fuel cells, for example. The oxygen reduction reaction electrocatalyst is in the form of platinum nanoparticles embedded in a nitrogen-enriched mesoporous carbon matrix, particularly a nitrogen-enriched graphite matrix. The nitrogen-enriched graphite matrix has an average surface area of 240.4 m2/g, and the platinum nanoparticles each have an average diameter between 10 nm and 12 nm.	SAPTO	<u>SA118400265+</u>
1.	MOHAMMED SAAD AHMED ALMOHAMMADI ALTHAKAFI	116370323	2021-11-30	Three stages evaporative cooler with humidity control and method of using	The invention relates to air-cooling device in several stages leading to cooler temperatures as low using direct evaporation cooling in a way that allows to control the moisture technique and method of using, and mainly consists of pneumatic ventilators and electric pump in addition to the metal longitudinal sliced thin 24 each quilted fabric absorbent liquids 33.34, and are monitoring slides to form cells in the form of 21.22 columns and divide the cell into two categories within each column, cooling occurs by passing air into each category cells, which are parts of which contain wetted fabric, and leads to repeat the heat exchange between the two in several stages to reach the degree of cooling is low, as the separation between the two categories of cells leads to the possibility of choosing dry or wet cooling air as well as controlling the rate of humidity. Through the air control paths inside the machine and in the air vents enter and exit the possibility of cooling the room air o	SAPTO	<u>SA116370323+</u>

1.	AYOUB ABDULLAH ALQADAM TANSIR AHAMAD ZEID ABDULLAH ALOTHMAN SAAD ALSHEHRI MU NAUSHAD	US 15/722,898	2017.10.02	CARBOXYLIC FUNCTIONALIZED MAGNETIC NANOCOMPOSITE	Carboxylic functionalized magnetic nanocomposites can include a magnetic compound, such as Fe3O4, that is encapsulated by a plurality of amino organosilane groups. The organosilane groups can include 3-[2-(2-Aminoethylamino)ethylamino]propyl- trimethoxysilane (TAS). At least some of the organosilane groups can have amino and carboxylic acid substituents. The organic pollutants can include malachite green dye. The carboxylic functionalized magnetic nanocomposites can adsorb dye from solution, such as wastewater. The carboxylic functionalized magnetic nanocomposites can be separated from the solution using an external magnetic material. Fig. 1.	USPTO	<u>US</u> <u>15/722,898</u>
2.		SA 8980	2021-11-30			SAPTO	<u>SA 8980</u>
1.	RABAB ABD EL MONEIM EL DIB SHAZA MOHAMED AL-MASSARANI ALI ALI EL-GAMAL MANAL AHMED AWAD	118400112	2021-12-05	Method of Synthesizing of 3- Oxolupenal Nanoparticles	A method for synthesizing 3-oxolupenal nanoparticles including isolating 3-oxolupenal from a fraction of Nuxia oppositifolia plant, reducing the 3-oxolupenal to obtain a powder of 3-oxolupenal, dissolving the powder of 3-oxolupenal in methanol to form a first solution, adding the first solution to boiling water to form a second solution, sonicating the second solution, and freeze-drying after sonication to obtain the synthesized 3-oxolupenal nanoparticles. The synthesized 3-oxolupenal nanoparticles exhibited cytotoxic effects and antimicrobial effects. FIG. 1.	SAPTO	<u>SA118400112+</u>
1.	PROMY VIRK KHALID MUSTAFA ORTASHI AWATIF AHMED HENDI MANAL AHMED AWAD MAI ABDELRAHMAN ELOBEID	119410028	2021-11-30	FABRICATION OF PROBIOTICS NANOWHISKERS USING CHEESE	A method of fabricating probiotics nanowhiskers using cheese comprises cutting and grinding cheese to produce cheese powder; mixing the cheese powder with sulfuric acid to produce a solution; stirring the solution to produce a stirred solution; and filtering the stirred solution to produce the probiotics nanowhiskers. The fabricated probiotics nanowhiskers possess antioxidant, anti-inflammatory, antitumor, and antimicrobial properties. The probiotics nanowhiskers may reduce cadmium concentration in a patient's liver. The probiotics nanowhiskers may also ameliorate the oxidative stress assessed as a decrease in the serum MDA levels in a patient. Fig. 7.	SAPTO	<u>SA119410028+</u>
1.	RAJABATHAR JOTHI RAMALINGAM HAMAD AL-LOHEDAN	118400040	2021-11-30	COMPOSITE ELECTRODE MATERIAL FOR SUPERCAPACITORS	The composite electrode material for supercapacitors includes mesoporous manganese dioxide (MnO2), graphene oxide, and nanoparticles of molybdenum disulfide (MoS2). The composite material is prepared by preparing mesoporous manganese dioxide, preferably by surfactant-assisted precipitation, then mixing graphene oxide with the mesoporous MnO2 is ethanol and ultrasonicating, and finally nanoparticles of MoS2 are mixed with the suspension of graphene oxide and mesoporous MnO2 to form the composite electrode material. The capacitance of the material may be varied by changing the concentration of MoS2 nanoparticles. Samples of the composite electrode material electrode material exhibited good supercapacitance values, such as 527 and 1160 F/g. Figure 1B.	SAPTO	<u>SA118400040+</u>
1.	KHALID MUSTAFA ORTASHI REEMA ABDULLAH ALNAMLAH ALI KANAKHIR ALDALBAHI AWATIF AHMED HENDI MANAL AHMED AWAD	120410328	2021-10-17	Synthesis of Zinc Oxide Nanoparticles Using Cymbopogon Proximus Extract	A method of synthesizing zinc oxide nanoparticles includes preparing a liquid extract of Cymbopogon proximus, dissolving zinc salt in the liquid extract to provide an extract with zinc salt, adding a base to the extract with zinc salt to form a precipitate including zinc oxide nanoparticles. The method overcomes the drawbacks associated with prior chemical methods of synthesizing nanoparticles, while providing increased yield of the nanoparticles. FIG. 6A	SAPTO	<u>SA120410328</u>

1.	FOZEYAH SALEH ALMIMAN	120410335	2021-10-14	Method of Synthesizing Silver Nanoparticles Using Mint Extract	A method of synthesizing silver nanoparticles using mint can include providing a solution including silver nitrate, providing an extract of mint, mixing the silver nitrate solution and the extract solution to form an aqueous mixture, and resting the aqueous mixture for a period of time to form the silver nanoparticles. The mint can be mint grown and harvested in Medina, Saudi Arabia. FIG. 9A	SAPTO	<u>SA120410335+</u>
1.	AMNAH EL-ENAZY PROMY VIRK RABIA QINDEEL AWATIF AHMED HENDI MANAL AHMED AWAD MAI ABDELRAHMAN ELOBEID	120410327	2021-10-17	Synthesis of Probiotic Nanoparticles	A method of preparing probiotic nanoparticles can include dissolving formulated probiotics in methanol, spraying the methanol solution into boiling water under ultrasonic conditions to provide a sonicated solution, and stirring the sonicated solution to obtain probiotic nanoparticles. The probiotic nanoparticles may be cluster or rod-shaped. The probiotic nanoparticles may be administered to a subject to reduce oxidative stress or to treat diseases associated with oxidative stress. FIG. 1	SAPTO	SA 120410327+
1.	KHALID MUSTAFA ORTASHI ALI ALDALBAHI AWATIF AHMAD HENDI MANAL AHMED AWAD WADHA KHALAF ALENAZI	119410086	2021-10-14	Synthesis of Titanium Dioxide Nanoparticles Using Cymbopogon Proximis	Synthesis of titanium dioxide (TiO2) nanoparticles (NPs) includes mixing Cymbopogon proximis (Maharayb) grass extract with Titanium (IV) isopropoxide (TTIP). The synthesis is simple and occurs at a rapid rate. The synthesized TiO2 nanoparticles can be effective in degrading Rhodamine B dye under UV light irradiation. Accordingly, the TiO2 nanoparticles can be useful in purifying drinking water.	SAPTO	<u>SA119410086+</u>
1.	KHALID MUSTAFA ORTASHI DINA WAFIQ SOLIMAN AWATIF AHMAD HENDI MANAL AHMED AWAD	119400637	2021-10-17	SYNTHESIS OF SILVER-PMMA NANOCOMPOSITE FILM USING HERBAL EXTRACT	The synthesis of a silver-PMMA nanocomposite film using herbal extract includes mixing an aqueous extract of Aristolochia bracteolate buds with an aqueous solution of silver nitrate, thereby reducing the silver ions to silver metal nanoparticles. A solution of the silver nanoparticles is added to a solution of PMMA [poly (methyl methacrylate)] in N'N- dimethylformamide (DMF) with stirring at 80°C. A brown solution of silver colloids develops, which is cast in a glass plate and the DMF is evaporated at room temperature, leaving a silver- PMMA nanocomposite film. Testing on water shows the silver-PMMA nanocomposite film prevents or inhibits growth of microbes, suggesting use as an antimicrobial or antibacterial agent. e.g., in water purification. In addition, testing by disc diffusion against E. coli and Bacillus cereus showed zones of inhibition, also suggesting use as an antimicrobial or antibacterial agent.	SAPTO	SA119400637+
1.	ZEYAD ABDULWAHID HAIDAR	119400454	2021-10-14	Solar Desalination System	The solar desalination system is a hybrid system combining a Fresnel solar concentrator with a solar desalination still. The solar still includes an absorber base, at least one sidewall, and a hollow cover. The hollow cover has an inlet port for receiving seawater such that the seawater passes through an interior of the hollow cover and exits through at least one outlet port into an open interior region of the solar still. At least one collection duct is secured to an inner face of the at least one sidewall for collecting pure water condensate. A vacuum pump is in communication with the open interior region of the solar still through a vacuum port for selectively lowering the pressure within the open interior region of the solar still is suspended above a linear Fresnel reflector array such that the absorber base is positioned at a focal point thereof.	SAPTO	<u>SA119400454+</u>
1.	ALI ABDULLAH ALSHATWI PERIASAMY VAIYAPURI SUBBARAYAN JEGAN ATHINARAYANAN	118400039	2021-10-14	Synthesis of Nanostructures from Phoenix Dactylifera Agro- Wastes	A method of synthesizing nanostructures from agro-waste include providing powdered Phoenix dactylifera agro-waste; mixing the powdered Phoenix dactylifera agro-waste with a liquid to provide a Phoenix dactylifera agro-waste solution; heating the Phoenix dactylifera agro-waste solution in a hydrothermal autoclave to provide a heated solution; and centrifuging the heated solution to provide a liquid fraction and a solid fraction. The liquid fraction include a first	SAPTO	<u>SA118400039+</u>

1.	KHALID S AL-NUMAIR VEERAMANI CHINNADURAI	118400008	2021-10-14	BIOMIMETIC SYNTHESIS OF ANTIHYPERGLYCEMIC SILVER	plurality of nanostructures. The first plurality of nanostructures include C-dots. The solid fraction further processed to provide a second plurality of nanostructures and a third plurality of nanostructures. The second plurality of nanostructures include lignin nanoparticles. The third plurality of nanostructures include cellulose nanocrystals. The nanostructures used in various applications, such as three dimensional cell culture, UV -protecting textiles, and bio-imaging. A biomimetic synthesis of antihyperglycemic nanoparticles using silver nitrate and Lavatera cretica is a method for the green synthesis of silver nanoparticles. These nanoparticles may be	SAPTO	SA118400008+
	MOHAMMED A ALSAIF			NANOPARTICLES	produced by extraction of fresh L. cretica leaves and mixing and incubation of the resulting L. cretica extract with silver nitrate to produce a nanoparticle composition including the silver nanoparticles. The nanoparticle composition may protect against hyperglycemia.		
1.	AYMAN ATTA HAMAD AL-LOHEDAN ABDELRAHMAN EZZAT MOHAMED HASAN WAHBY MAHMOOD ABDULLAH	119400615	2021-09-14	Modification Of Sand With Superhydrophobic Silica/Wax Nanoparticles	The modification of sand with superhydrophobic silica/wax nanoparticles may provide for water storage, applicable, for example, in desert environments. In particular, highly thermal stable superhydrophobic coats for sand are made of nanoparticles composed of superhydrophobic silica capped with paraf1in wax. Superhydrophobic sand modified by such nanoparticles addresses issues of water storage in desert environments, capitalizing on sand resource utilization. Superhydrophobic sand, as modified, has excellent water repellency and great water-holding capacity. The superhydrophobic sand modified with superhydrophobic silica/wax nanoparticles can be applied for the desert water storage for agriculture and planting.	SAPTO	<u>SA119400615</u>
1.	AYMAN NAFADY SAEED AL-ZAHRANI USMAN ALI RANA ARFAT ANIS KHAN	118400011	2021-09-14	NITROGEN AND PHOSPHORUS CO-DOPED CRYSTALLINE CARBON MATERIALS	The nitrogen and phosphorus co-doped crystalline carbon materials are prepared by a template-free method that includes pyrolizing a precursor mixture including a carbon source, a nitrogen source, and a phosphorus source. The method involves mixing known amounts of the precursor components, dissolving the precursor mixture in deionized water, distilling solvent from the aqueous mixture, and vacuum drying the residue to a dry solid mixture. The mixture is then carbonized by pyrolysis at 900°C in an argon atmosphere to obtain a nitrogen and phosphorus co-doped crystalline carbon material. The principles of the method are illustrated by a precursor mixture of sucrose, urea, and ammonium dihydrogen phosphate (NH4H2PO4). The amount of ammonium salt in the precursor mixture plays a key role in controlling the crystallinity, morphology, and composition of the N/P co-doped crystalline carbon material.	SAPTO	<u>SA118400011</u>
1.	HAMAD ZAID ALKHATHLAN ABDULLAH MOHAMMED AL-MAYOUF MAHMOOD MOHAMMED ABDULLAH MERAJUDDIN AINUDDIN KHAN	118400111	2021-09-27	Method of Protecting Metal from Corrosion Using Plant-Derived Anti-Corrosion Agents	Extracts of Matricaria aurea flowers are shown to exhibit anticorrosive activity when used with mild steel in acidic media. A process is shown for obtaining such anticorrosive extracts from the flowers of M. aurea. In particular, certain methanolic, aqueous methanolic and water extracts, as well as ethyl acetate and n-butanol fractions, of M. aurea flowers are shown to demonstrate particular anticorrosive activity when used with mild steel in acidic media. An isolated flavonoid compound from M. aurea flowers, designated as apigenin-7-O-β-D-glucoside, is particularly useful for anticorrosive activity when used with mild steel in acidic media. Figure 1.	SAPTO	<u>SA118400111+</u>
1.	ISMAIL KHALIL WARAD ALI MOHAMMED ALSALME MUJEEB ABDULLAH SULTAN NABIL AHMED AL-ZAQRI	118400050	2021-09-14	METHOD OF MAKING PALLADIUM NANOPARTICLES	The method of making palladium nanoparticles is a microwave thermolysis-based method of making palladium nanoparticles from a complex of palladium(II) acetate Pd(O2CCH3) 2 (or Pd(OAc)2) and a ligand. The complex of palladium(II) acetate and the ligand is melted in oleic acid and dichloromethane to form a solution. The ligand is 1- (pyridin-2-yldiazenyl)naphthalen- 2-ol (C 15H11N3O), which has the structure: The solution is stirred for two hours under an inert argon atmosphere, and then irradiated with microwave radiation to produce palladium nanoparticles.	SAPTO	<u>SA118400050+</u>

1.	JAMAL TAGELSIR ELSHEIKH ADEL RABIE USMAN MOHAMMAD IBRAHIM ALWABEL	118400030	2021-08-04	Encapsulated Sustained Release Urea Fertilizer	The encapsulated sustained release urea fertilizer is a urea fertilizer and a stabilizer encapsulated in fumed silica. The stabilizer may be a gellan gum hydrogel or biochar. The encapsulated sustained release urea fertilizer allows for both immediate and sustained nitrogen release over time and displays reduced nitrogen volatilization and increased water holding capacity.	SAPTO	<u>SA118400030+</u>
1.	AYMANM ATTA HAMAD AL-LOHEDAN MAHMOOD ABDULLAH	118390626	2021-07-28	Composition and method for enhanced oil recovery	The composition for enhanced oil recovery includes metal oxide or carbonate nanoparticles capped or encapsulated by a water soluble poly(ionic liquid) (PIL). The nanoparticles may be, e.g., CaCO3, TiO2, Cu2O·Fe3O4, or ZrO2. The poly(ionic liquid) may be a copolymer of 2- acrylamido-2-methyl-1-propanesulfonic acid (AMPS) with N-isopropyl acrylamide, N-vinyl pyrrolidone, methacrylic acid, or acrylamide. The composition is made by synthesizing the metal oxide or carbonate nanoparticles in the presence of the PIL. The resulting nanocomposite or nanomaterial alters the wettability of carbonate rock in a carbonate reservoir, releasing asphaltenic crude oil from the surface of the carbonate rock and replacing oil in the pores of the rock, thereby enhancing secondary and tertiary oil recovery.	SAPTO	<u>SA118390626+</u>
1.	AMEL LAREF KHALID MUSTAFA ORTASHI AWATIF AHMED HENDI FATMAH YAHIA AL-ABBAS LENA JASSIM MANAL AHMED AWAD NAWAL AHMED MADKHALI HAJAR ABDULLAH ALDAKHIL	118390374	2021-07-27	Synthesis of Reduced Graphene Oxide Nanoparticles	The synthesis of reduced graphene oxide nanoparticles includes the steps of: mixing soot with an acid to obtain a solution; adding a first oxidant gradually into the solution to oxidize the carbon source and obtain a suspension, stirring the suspension while maintaining a temperature of the suspension at about 35 oc; raising the temperature of the suspension to about 60 °C; adding water into the solution; adding a second oxidant into the suspension while stirring resulting in the oxidation of the carbon source to form the reduced graphene oxide nanoparticles; and isolating the resulting reduced graphene oxide nanoparticles by centrifugation. The acid is preferably an acid mixture including, for example, sulfuric acid (H2S04) and phosphoric acid (H3P04). The first and second oxidants can be potassium permanganate (KMn04) or hydrogen peroxide (H2O2). Fig. 1.	SAPTO	SA118390374+
1.	IBRAHIM MUTASIM IBRAHIM KHALIL MUTASIM IBRAHIM KHALIL	118390365	2021-07-27	Green Method for Coating A Substrate with Silver Nanoparticles	The method for coating a substrate with silver nanoparticles includes reducing a silver nitrate solution with an ethanol extract of the traditional Indian medicinal plant (Curcuma Longa L.), a naturally abundant antioxidant, to form a final solution, and contacting the final solution with the substrate to provide the silver nanoparticle coating. Formation of the silver nanoparticle coating on the substrate can be determined when a mirror in the final solution is observed. The thickness of the coating layer can be less than 125 nm. The coated substrates can be highly conductive. Fig. 1.	SAPTO	<u>SA118390365+</u>
1.	ALI AHMED MUSTAFA ALI MUSTAFA ABDALLA SALIH MUTASIM IBRAHIM KHALIL	119410057	2021-07-07	Extract of Vicia Faba Beans	The extract of Vicia faba beans is prepared by soaking beans in distilled water overnight and then boiling in a water bath to reduce the volume of aqueous extract, which is then homogenized and filtered. The filtrate is concentrated to a smaller volume, lyophilized, and powdered. The lyophilized powder is extracted with hexane to remove oils and lipids. The oil- free lyophilized powder is dissolved in ethanol solvent and extracted for eight hours under reflux, and filtered. The volume of ethanol is reduced by a rotary evaporator, and a first off-white precipitate (sample A-1) is collected, washed with ethanol, and dried at 80°C. Mass spectrometry shows a molecular weight of 200.16447 g mol-1, and an empirical formula of C9H16N2O3 is assigned. Intraperitoneal injection of mice with 50 mg/kg of A-1 twenty minutes prior to injection with strvchnine protected the mice from strychnine-induced convulsions to the same extent as phenobarbitone (phenobarbital).	SAPTO	<u>SA119410057+</u>

1.	IBRAHIM HOTAN ALSOHAMI AYMAN A GHFAR AYOUB ABDULLAH ALQADAMI MOONISALI KHAN ZEID ABDULLAH ALOTHMAN MAZOOM RAZA SIDDIQUI	119410035	2021-07-27	Magnetic Polymer Nanocomposite for Removal of Divalent Heavy Metal Ions from Water	The magnetic polymer nanocomposite for removal of divalent heavy metal ions from water is magnetic nanocomposite having a core of magnetite (Fe3O4) in a shell of branched polyhydroxystyrene (BHPS), designated as Fe3O4@BHPS. The nanocomposite is synthesized by co-precipitation in alkali solution. Testing showed the nanocomposite reached 93% and 80% Pb(II) and Cd(II) adsorption, respectively, in 30 minutes, attaining equilibrium in 120 minutes. The maximum adsorption capacities of Pb(II) and Cd(II) at 298K were 186.2 and 125 mg/g, respectively. After adsorption, the nanocomposite with the heavy metal(s) adsorbed thereto was easily removed from aqueous solution by application of a magnetic field.	SAPTO	<u>SA119410035+</u>
1.	AHMED ABD ELREHIM ALI BASEM SAYED AHMED ABDULLAH AL-DOSS MOHAMMED ZAKRI MOHAMMED AL-SALEH	118400188	2021-07-27	Nanobody Against Begomoviruses	A nanobody directed against begomoviruses is capable of selectively binding to ToLCSDV viral particles, TYLCV particles, and/or other begomoviruses. The nanobody includes an amino acid sequence of SEQ ID NO: 2.	SAPTO	<u>SA118400188+</u>
1.	TANSIR AHAMAD JAHANGEER AHMED ZEID A AL-OTHMAN SAAD M ALSHEHRI MU NAUSHAD	117390141	2021-07-04	METHOD FOR PREPARING ADSORBENT FOR REMOVING ORGANIC POLLUTANTS FROM WATER	A method for preparing an adsorbent for removing organic dyes from water includes reacting egg white with hydrochloric acid. The reaction can include mixing egg white with water to form a solution, and adding the acid to the solution to form a precipitate. The precipitate can be filtered, washed, and dried to provide the adsorbent. The adsorbent can be contacted with wastewater contaminated with organic pollutants to remove the organic pollutants from the wastewater. The organic pollutants can include p-nitrophenol. FIG. 1	SAPTO	<u>SA117390141+</u>
1.	AHMED MOHAMMED NABAWY ELSAYED MOHMED SHERIF KHALIL ABDELRAZEK KHALIL	118390442	2021-07-27	Method of Preparing A Metal Matrix Nanocomposite	A method for synthesizing a metal matrix nanocomposite (MMNC) is an in-situ synthesis technique for preparing a metal matrix with ceramic reinforcements dispersed homogenously therein. The method includes mixing a base metal matrix material with two or more ceramic- forming elements to form a mixture; blending the mixture; drying the mixture; ball milling the mixture with a plurality of milling balls to form a milled mixture; using induction heating to form a melt flow and induce electromagnetic forces; and initiating a plurality of stirring vortexes in the melt flow to form the metal matrix nanocomposite. Fig. 1.	SAPTO	<u>118390442</u>
1.	AYMAN ATTA HAMAD AL-LOHEDAN ABDELRAHMAN EZZAT MAHMOOD ABDULLAH	118390457	2021-07-28	Synthesis of bimetallic oxide nanocomposites	A method of synthesizing bimetallic oxide nanocomposites includes the steps of: providing a first metal salt solution; adding an oxidizing agent to the first metal salt solution while degassing the solution with an inert gas; heating the first metal salt solution; adding a second metal salt solution to the heated first metal salt solution to form a reaction mixture; adding a solution comprising a poly (ionic liquid) into the reaction mixture; adding a first base into the reaction mixture; adding a second base while stirring and maintaining a temperature ranging from about 40°C to about 65°C to provide a solution include FeCl3 dissolved in water. The second metallic salt solution can include CuCl2 dissolved in water. The bimetallic oxide nanocomposites can be combined with epoxy resin to coat a steel stubstrate. Fig. 1.	SAPTO	<u>118390457</u>
1.	TANSIR AHAMAD JAHANGEER AHMED ZEID A AL-OTHMAN SAAD M ALSHEHRI MU NAUSHAD	117390140	2021-07-27	METHOD FOR PREPARING AN ADSORBENT FOR REMOVINGORGANIC DYES FROM WATER	A method for preparing an adsorbent for removing organic dyes from water includes providing a volume of egg white, adding a volume of formaldehyde to the volume of egg white to form a mixture, maintaining a pH of the mixture at about pH 8.5, stirring the mixture until a viscous product is formed, and washing and drying the product to provide the adsorbent. FIG. 1.	SAPTO	<u>117390140</u>

1.	CHANDRASEKAR BALACHANDRAN SAVARIMUTHU IGNACIMUTHU VEERAMUTHU DURAIPANDIYAN NAIF ABDULLAH AL-DHABI	118400264	2021-06-02	Process For Obtaining A Naphthoquinone Derivative From Streptomyces Sp	The process for obtaining a naphthoquinone derivative from Streptomyces sp. includes providing a seed inoculum of a strain of Streptomyces sp.; culturing the Streptomyces sp. in a culture nutrient medium; centrifuging the culture nutrient medium to provide a supernatant and a biomass precipitate; admixing a water immiscible solvent to the supernatant to produce a water immiscible solvent extract layer and a water layer; and isolating the antimicrobial and cytotoxic compound from the water immiscible solvent extract layer by performing silica gel chromatography.	SAPTO	<u>SA118400264+</u>
1.	AMEL LAREF KHALID MUSTAFA ORTASHI AWATIF AHMED HENDI MANAL AHMED AWAD	118390613	2021-06-07	GREEN SYNTHESIS OF REDUCED GRAPHENE OXIDE USING NIGELLA SATIVA SEED EXTRACT	The green synthesis of reduced graphene oxide nanoparticles using Nigella sativa seed extract comprises the steps of mixing a quantity of soot or other carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into the solution to oxidize the soot and obtain a suspension; stirring the suspension while maintaining the temperature of the suspension at about 35°C; adding Nigella sativa seed extract to the suspension while raising the temperature of the suspension to about 60°C; adding hydrogen peroxide to the suspension; and isolating the reduced graphene oxide nanoparticles by centrifugation.	SAPTO	<u>SA118390613+</u>
1.	KHALID MUSTAFA ORTASHI RABAB ABD EL MONEIM EL DIB SHAZA MOHAMED AL-MASSARANI AWATIF AHMED HENDI MANAL AHMED AWAD	117390017	2021-02-17	SYNTHESIS OF NANOPARTICLES USING BALANITES AEGYPTIACA	A method of preparing nanoparticles from desert date can include providing a metal salt solution comprising metal ions; providing desert date extract solution that comprises a reducing agent, and combining the metal ion solution and the desert date extract solution while stirring at a temperature in the range of 25 °C to 100 °C to produce metal or metal oxide nanoparticles. The metal nanoparticles can be gold nanoparticles. The metal oxide nanoparticles can be zinc oxide nanoparticles. The nanoparticles can be used to inhibit the growth or proliferation of a cancer cell and/or microorganisms. Fig. 1.	SAPTO	<u>SA117390017+</u>
1.	AYMAN EL-FAHAM (SA); ZEID ALOTHMAN [SA]; KAREEM YOUSSIF MAHMOUD [SA] +	117380667	2021-04-11	Functionalizable Monolithic Platforms	The method of preparing a functionalizable monolithic platform includes the steps of: functionalizing the silanol groups on a support having silanol groups or the ketone groups on a support having ketone groups with an organic compound having a vinyl group; and copolymerizing the alkenyl-functionalized silanol or ketone groups with itaconic anhydride monomers and vinyl monomers and/or a crosslinker having at least two vinyl reactive groups in a solvent by adding a suitable initiator for a time and temperature or radiation energy sufficient to thereby complete the copolymerization reaction process. FIG 1B.	SAPTO	<u>SA117380667+</u>
1.	PROMY VIRK [SA]; AWATIF AHMED HENDI [SA]; LULWAH SALEH AL-HASSAN [SA]; MANAL AHMED AWAD [SA]; MAI ABDELRAHMAN ELOBEID [SA]; NOUF ABDALLAH AL-GI-IAMDI [SA] +	117380666	2021-03-04	Method of Synthesizing Nanoparticles Hesperetin	The present invention relates to bio-nanotechnology and particularly, to a method of preparing non-metal hesperetin nanoparticles for use in antioxidant therapy to treat lead-induced stress in mammals includes dissolving hesperetin in an organic solvent to form a solution; spraying the solution in boiling water while applying ultrasonic energy to form a mixture; and stirring the mixture for at least about 15 minutes at a speed of about 200-800 rpm to obtain the hesperetin nanoparticles. FIG. 1 A	SAPTO	<u>SA117380666+</u>
1.	REFAT AHMED EL-SHEIKHY [SA]; MOSLEH ALI AL-SHAMRANI [SA] +	117380722	2021-03-02	EXPANSIVE SOIL RESISTANT FOUNDATION SYSTEM	The expansive soil resistant foundation system includes a foundation frame having footings forming a grid pattern. The grid pattern contains a plurality of spaces within the pattern. Each space defines a main swell duct. Each main swell duct may be provided with one or more sub- swell ducts. The swell ducts permit free expansion and contraction of the expansive soil. A vent extends from each swell duct to expel trapped air. A drainage system is distributed throughout the foundation frame to eliminate accumulation of underground water. The swell ducts, vents, and the drainage system alleviate potential pressures that can be exerted on the foundation	SAPTO	<u>117380722</u>

					from the expansion and contraction of the expansive soil, which can lead to cracks and structural failure. FIG. 1A		
1.	RAJABATHAR JOTHI RAMALINGAM [SA]; JUDITH VIJAYA [SA]; JESU DOSS [SA]; HAMAD AL-LOHEDAN [SA] +	119400913	2021-06-07	Template-Free Method of Preparing Zeolites from Biomass	A template-free method of preparing zeolites from biomass can include using rice husk ash waste material as a precursor material. The zeolites can include ZSM-5 zeolites, such as, hierarchical pure zeolites and metal-loaded (Cu, Ni) ZSM-5 zeolites. This method allows for production of zeolites in a low cost and environmentally friendly manner. These ZSM-5 zeolites may be used for numerous applications, including killing cancer cells. The cancer cells may be human lung cancer cells.	SAPTO	<u>SA119400913+</u>
1.	AYMAN ATTA [SA]; HAMAD AL-LOHEDAN [SA]; MAHMOOD ABDULLAH [SA] ↓	119400652	2021-06-09	Hydrophobic Nanoparticle Compositions for Crude Oil Collection	Hydrophobic nanoparticle compositions include silica nanoparticles capped with asphaltene succinimide alkoxy silane (ASAS). The nanoparticles can have a particle size ranging from about 20 nm to about 1 0000 11m. The nanoparticle compositions can be used as a coating for raw sand to provide a super-hydrophobic sand. The nanoparticle compositions can be used as a coating for a polyurethane (PU) sponge to provide a super-hydrophobic sponge. The super- hydrophobic sand and/or super-hydrophobic sponge can be used to collect crude oil deposited in aquatic environments as a result of petroleum crude oil spills.	SAPTO	<u>SA119400652+</u>
1.	RAJABATHAR JOTHI RAMALINGAM [SA]; JUDITH VIJAYA [SA]; HAMAD AL-LOHEDAN [SA]; SIVA CHIDAMBARAM [SA] +	119400351	2021-06-23	Method of Making a Porous Nano- Carbon Electrode from Biomass	The method of making a porous carbon electrode is a chemical activation-based method of making a porous nanocarbon electrode for supercapacitors and the like. Recycled jackfruit (Artocmpus heterophyllus) peel waste is used as a precursor carbon source for producing the porous nanocarbon. A volume of jackfruit (Artocarpus heterophyllus) peel is collected, dried and then heated under vacuum to produce precursor carbon. The precursor carbon is mixed with phosphoric acid (H3PO4) to form a mixture, which is then stirred, dried and heated to yield porous nanocarbon. The porous nanocarbon is mixed with a binder, such as poly (vinylidenedifluoride), acetylene black, and an organic solvent, such as n-methyl pyrrolidinone, to form a paste. This paste is then coated on a strip of nickel foil to form the porous carbon electrode.	SAPTO	<u>SA119400351+</u>
1.	HATEM SALAMA ALI [SA]; KHALID MUSTAFA ORTASHI [SA]; ZEINAB KORANY MOHAMMED HASSAN [SA]; AWATIF AHMAD HENDI [SA]; MOHAMED FEKRY SERAG ELDIN [SA]; MOHAMED MAHMOUD HAFZ [SA]; MANAL AHMED AWAD [SA]; HANY MOHAMED YEHIA [SA]	118400307	2021-06-07	Method of Synthesizing Doum Nanoparticles	Doum nanoparticles can be synthesized by drying Doum fruit, reducing the dried Doum fruit to a powder or flour, and subjecting the powder to acid hydrolysis or alcohol hydrolysis to provide Doum nanoparticles. The Down nanoparticles can be used as a food preservative. When compared to bulk Doum particles, the Down nanoparticles can provide substantially increased antibacterial activity.	SAPTO	<u>SA118400307+</u>
1.	MOHAMED AL-OMAR [SA]; MASHOOQ AHMAD BHAT [SA] +	119400352	2021-06-23	DIHYDROPYRIMIDINONE DERIVATIVES	A dihydropyrimidinone derivative includes a compound having a chemical structure according to Formula 1: wherein Z is selected from O, S and N; Y is N X is selected from O and S; and R represents aryl, substituted aryl, heteroaryl, or substituted heteroaryl, wherein the substituted aryl or substituted heteroaryl have one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, nitro, hydroxyl, alkylthio, alkylamino, heteroaryl, aryloxy, haloaryloxy, arylthio, arylamino, and pharmaceutically acceptable salts thereof. Fig.1.	SAPTO	<u>SA119400352+</u>
1.	MOHAMED AL-OMAR [SA]; MASHOOQ AHMAD BHAT [SA] +	118390677	2021-06-09	DIHYDROPYRIMIDINONE DERIVATIVES	A dihydropyrirnidinone derivative includes a compound having a chemical structure according to Formula 1: Wherein Z is selected from Ch2, O, and N; X is selected from O and S; and R represents aryl, substituted aryl, heteroaryl, or substituted heteroaryl, wherein the substituted	SAPTO	SA118390677+

1.	JAMAL MOHAMMED ALI KHALED [SA]; HAZEM AHMED GHABBOUR [SA]; SALIM S AL-SHOWIMAN [SA]; MUJEEB ABDULLAH SAEED SULTAN (SA]; NAIYF SULTAN HELIAL ALHARBI [SA]; YAHIA NASSER MABKHOT [SA] +	118390667	2021-06-07	SYNTHESIS AND ANTIMICROBIAL USE OF A TRITHIOCARBONATE DERIVATIVE	aryl or substituted heteroaryl have one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, alkoxy, haloaikoxy, nitro, hydroxyl, alkylthio, alkylarnino, heteroaryl, aryloxy, haloaryloxy, arylthio, arylamino, and pharmaceutically acceptable salts thereof. The present subject matter also relates to a method of making a dihydropyrimidinone derivative, a method of treating a gastrointestinal disease, a method of treating an ulcer, a pharmaceutical composition, and a method of making a pharmaceutical composition. A method for preparing a trithiocarbonate derivative compound includes reacting ethyl cyanoacetate, carbon disulfide (CS2) and ethyl chloroacetate in the presence of potassium carbonate (K2C03) in an organic solvent to produce 2,2'- (thiocarbonylbis(sulfanediyl))diacetate compound, represented by the structural formula:	SAPTO	<u>SA118390667</u>
1.	AYMAN ATTA [SA]; HAMAD ALKATHLAN [SA]; HAMAD AL-LOHEDAN [SA]; ABDULRAHMAN EZZAT [SA]; MAHMOUD SAEED ABDULLAH [SA]; MERAJUDDIN KHAN [SA] +	118400009	2021-06-09	Biosynthesized Magnetic Metal Nanoparticles For Oil Spill Remediation	The biosynthesized magnetic metal nanoparticles for oil spill remediation are magnetic nanoparticles capped with an extract of Anthemis pseudocotula. The magnetic nanoparticles are formed by co-precipitation of ferric chloride hexahydrate and ferrous chloride tetrahydrate in an ethanol solution of the extract with the dropwise addition of ammonium hydroxide to raise the pH to between 8 and 11. The extract may be an extract of the aerial parts of Anthemis pseudocotula in a low polar extraction solvent, such as an n-alkane solvent or mono-di-, or trichloromethane. The extract is hydrophobic, improving dispersion of the magnetic nanoparticles in oil spills in seawater, resulting in 90% removal of oil for a 1:10 ratio of nanoparticles: oil by weight.	SAPTO	<u>SA118400009+</u>
1.	HATEM SALAMA ALI [SA]; DINA METWALLY HASANIN [SA]; REEM ATTA ALAJMI [SA]; MOHAMED SERAG EL-DIN [SA]; MANAL AHMED AWAD [SA]; MANAL FAWZY ELKHADRAGY [SA]; HANY YEHIA [SA] +	119410038	2021-04-11	Methanol Extract of Grape Seed Nanoparticles	The methanol extract of grape seed nanoparticles is prepared from grape seeds washed in distilled water and oven-dried at 60°C for 12 hours. The seeds are milled or ground to a powder and sieved to a maximum size of 0.355 mm. The powder is added to concentrated HCI and stirred at 3000 rpm at 30°C for one hour, and then distilled water is added with stirring for an additional 2 hours. The mixture is filtered, and the marc is dried to recover grape seed nanoparticles. The nanoparticles are added to methanol at the rate of 100 mg/ml, left in a shaker for 24 hours at room temperature, centrifuged, filtered, and the nanoparticle extract (the supernatant) is recovered. Agar well diffusion testing showed that the nanoparticle extract exhibited greater antibacterial activity than a methanol extract of grape seeds alone, and testing showed greater antioxidant levels in the nanoparticle extract as well.	SAPTO	<u>SA119410038+</u>
1.	PERIASAMY VAIYAPURI SUBBARAYAN [SA]; JEGAN ATHINARAYANAN [SA]; ALI ABDULLAH ALSHATWI [SA] +	117390045	2021-03-04	Method Of Making A Three- Dimensional, Leaf-Based Scaffold	The method of making a three-dimensional, leaf-based scaffold for three-dimensional cell cultures includes washing a quantity of Ficus religiosa leaves, then treating the washed Ficus religiosa leaves in a sodium hydroxide solution to obtain alkali-treated Ficus religiosa leaves. The alkali-treated Ficus religiosa leaves are washed, and then superficial tissue is removed from the alkali-treated Ficus religiosa leaves to obtain Ficus religiosa leaf skeletons. The Ficus religiosa leaf skeletons are dried and then consecutively immersed in distilled water, a phosphate buffer saline solution, and plain Dulbecco's modified Eagle's medium (DMEM) to form the three-dimensional scaffolds for three-dimensional cell cultures. Each three-dimensional scaffold can be used for growing three-dimensional cell cultures, such as human mesenchymal stem cell cultures. Fig. 1.	SAPTO	<u>SA117390045+</u>